作物-机器人协同设计
Search documents
登上Cell封面:中国科学院将CRISPR基因编辑与AI机器人结合,推动可持续农业发展
生物世界· 2025-10-18 09:00
撰文丨王聪 编辑丨王多鱼 排版丨水成文 人工智能 (AI) 和 机器人 在向精准农业转型方面提供了巨大机遇,有助于提高农作物产量、降低成本并 促进可持续发展。然而,许多农作物的特性阻碍了基于人工智能的机器人技术的应用 。其中 一个瓶颈在于 花朵形态,其柱头凹陷,这妨碍了杂交育种过程的去雄和授粉。 2025 年 10 月 16 日,一项来自中国团队的研究登上了最新一期的 Cell 期刊的封面。该论文题为: Engineering crop flower morphology facilitates robotization of cross-pollination and speed breeding , 中国科学院遗传与发育生物学研究所 许操 研究员为论文通讯作者 , 中国科学院遗传与发育生物学研究 该研究将 生物技术 + 人工智能 ( BT + AI ) 深度融合,首次提出 作物-机器人协同设计 (Crop-robot co-design) 理念,通过基因编辑重新设计作物花型,快速精准创制"机器人友好"的结构型雄性不育系, 运用深度学习和人工智能成功研制 世界首台可自动巡航杂交授粉的智能育种机器人 ——" ...
华人学者本周发表6篇Cell论文:脱发治疗、逆转衰老、智能育种机器人、组织透明化成像、线粒体蛋白的共翻译输入、脱落酸受体
生物世界· 2025-08-16 08:10
Group 1 - The article highlights 11 research papers published in the prestigious journal Cell, with 6 authored by Chinese scholars, covering topics such as abscisic acid receptors, three-dimensional imaging, intelligent breeding robots, mitochondrial protein import, aging, and hair growth mechanisms [3][4][5][8][9][10][13][14][18][20][25][28][29][30][33]. Group 2 - A study from South China Agricultural University identifies the nitrate receptor NRT1.1B as a receptor for abscisic acid, revealing its role in integrating nitrogen nutrition and stress signals in plants [5][8]. - Tsinghua University's research introduces a novel method called VIVIT for achieving high-fidelity three-dimensional imaging of biological tissues, overcoming significant technical challenges in tissue transparency [10][13]. - The first intelligent breeding robot capable of automatic cross-pollination has been developed, integrating biotechnology and AI to enhance breeding efficiency and reduce costs [14][18][19]. - Research from Caltech elucidates the co-translational import of mitochondrial proteins, providing direct evidence of the timing and specificity of this process [21][24]. - A study from Altos Labs discusses "mesenchymal drift" in aging and disease, proposing partial reprogramming as a method to reverse this phenomenon [25][28]. - Research from Beijing Life Sciences Institute reveals that the membrane potential of fibroblasts is a key regulator of hair regeneration, with implications for treating hair loss [30][33].