多模态大模型融合

Search documents
具身智能机器人,如何才能活出个“人样”?
3 6 Ke· 2025-08-04 08:21
Core Insights - The article discusses the evolution and challenges of embodied intelligence, highlighting the distinction between "problem-solving" AI and "practical" AI, with the latter focusing on real-world interactions and learning through sensory experiences [1][3] - It emphasizes the need for embodied intelligence to overcome significant hurdles in understanding, associating, and interacting with the environment, which are essential for robots to function like humans in real-world scenarios [3][5] Group 1: Challenges in Embodied Intelligence - Embodied intelligence must adapt to unstructured real-world environments, requiring advanced computational capabilities to handle dynamic and unpredictable situations [5][6] - The development of higher cognitive strategies that integrate multiple sensory inputs is crucial for robots to understand and interact with their surroundings effectively [6][7] - Robots need to surpass traditional static data processing models to achieve a deeper understanding of dynamic changes and relationships in their environment [6][12] Group 2: Technological Components - The perception layer of embodied intelligence is vital for converting chaotic physical stimuli into understandable digital signals, relying on multimodal sensor fusion and dynamic environment modeling [8][10] - The cognitive layer processes raw data from the perception layer, employing hierarchical decision-making and world model construction to enable robots to learn from experiences [12][14] - The action layer ensures robots can execute tasks safely and effectively, utilizing bio-inspired drive technologies and human-robot collaboration safety designs [16][18] Group 3: Current Limitations and Future Directions - Current embodied intelligence models struggle with task completion rates in non-training scenarios, with a success rate of only 65% for tasks like object grasping [17] - Energy consumption and high costs remain significant barriers to the widespread adoption of humanoid robots, with typical models having a battery life of less than 2 hours and costs exceeding 500,000 yuan [18][19] - Research is focused on optimizing energy efficiency and reducing costs through new battery technologies and domestic production of core components [21][22] Group 4: Future Trends - The integration of multimodal large models is a key future direction, enabling robots to understand natural language commands and adapt quickly to new tasks with minimal samples [23][24] - Lightweight hardware innovations, such as bio-inspired muscle drive technologies, are expected to enhance performance while reducing costs [23][24] - The trend of virtual-physical collaborative evolution will allow robots to train in simulated environments, significantly improving their task execution capabilities in real-world settings [24][25]
清华大学具身智能多传感器融合感知综述
具身智能之心· 2025-07-27 09:37
Group 1 - The core viewpoint of the article emphasizes the significance of multi-sensor fusion perception (MSFP) in embodied AI, highlighting its role in enhancing perception capabilities and decision-making accuracy [5][6][66] - Embodied AI is defined as an intelligent form that utilizes physical entities as carriers to achieve autonomous decision-making and action capabilities in dynamic environments, with applications in autonomous driving and robotic clusters [6][7] - The article discusses the necessity of multi-sensor fusion due to the varying performance of different sensors under different environmental conditions, which can lead to more robust perception and accurate decision-making [7][8] Group 2 - The article outlines the limitations of current research, noting that existing surveys often focus on single tasks or fields, making it difficult for researchers in other related tasks to benefit [12][13] - It identifies challenges at the data level, model level, and application level, including data heterogeneity, temporal asynchrony, and sensor failures [12][66] - The article presents various types of sensor data, including camera data, LiDAR data, and mmWave radar data, detailing their characteristics and limitations [11][13] Group 3 - Multi-modal fusion methods are highlighted as a key area of research, aiming to integrate data from different sensors to reduce perception blind spots and achieve comprehensive environmental awareness [19][20] - The article categorizes fusion methods into point-level, voxel-level, region-level, and multi-level fusion, each with specific techniques and applications [21][29] - Multi-agent fusion methods are discussed, emphasizing the advantages of collaborative perception among multiple agents to enhance robustness and accuracy in complex environments [33][36] Group 4 - Time series fusion is identified as a critical component of MSFP systems, enhancing perception continuity and spatiotemporal consistency by integrating multi-frame data [49][51] - The article introduces query-based time series fusion methods, which have become mainstream due to the rise of transformer architectures in computer vision [53][54] - Multi-modal large language models (MM-LLM) are explored for their role in processing and integrating data from various sources, although challenges remain in their practical application [58][59] Group 5 - The article concludes by addressing the challenges faced by MSFP systems, including data quality, model fusion strategies, and real-world adaptability [76][77] - Future work is suggested to focus on developing high-quality datasets, effective fusion strategies, and adaptive algorithms to improve the performance of MSFP systems in dynamic environments [77][68]