Workflow
存储计算一体化
icon
Search documents
MCU,巨变
半导体行业观察· 2025-07-13 03:25
Core Viewpoint - The article discusses the significant shift in the automotive MCU market with the introduction of new embedded storage technologies like PCM and MRAM, moving away from traditional embedded Flash technology. This transition is seen as a strategic move that will have a profound impact on the MCU ecosystem [1][3]. New Storage Pathways - Major MCU manufacturers such as ST, NXP, and Renesas are launching new automotive MCU products featuring advanced embedded storage technologies, indicating a shift from traditional 40nm processes to more advanced nodes like 22nm and 16nm [2]. - The evolution of MCUs is characterized by increased integration of AI acceleration, security units, and wireless modules, positioning them as central components in automotive applications [2]. Embedded Storage Technology Revolution - The rise of embedded non-volatile memory (eNVM) technologies is crucial for addressing the challenges posed by the complexity of software-defined vehicles (SDVs) and the increasing demands for storage space and read/write performance [3]. - Traditional Flash memory is becoming inadequate in terms of density, speed, power consumption, and durability, making new storage solutions essential for MCU advancement [3]. ST's Adoption of PCM - ST has introduced the Stellar series of automotive MCUs featuring phase change memory (PCM), which offers significant advantages over traditional storage technologies [5][6]. - The Stellar xMemory technology is designed to simplify the development process for automotive manufacturers by reducing the need for multiple memory options and associated costs [7][9]. NXP and Renesas Embrace MRAM - NXP has launched the S32K5 series, the first automotive MCU based on 16nm FinFET technology with integrated MRAM, enhancing the performance and flexibility of ECU programming [10]. - Renesas has also released a new MCU with MRAM, emphasizing high durability, data retention, and low power consumption, further showcasing the advantages of MRAM technology [11]. TSMC's Dual Focus on MRAM and RRAM - TSMC is advancing both MRAM and RRAM technologies, aiming to replace traditional eFlash in more advanced process nodes due to the limitations faced by eFlash technology [15]. - TSMC has achieved mass production of RRAM at various nodes and is actively developing MRAM for automotive applications, indicating a strong commitment to new storage technologies [15][16]. Integration of Storage and Computing - The article highlights a trend towards "storage-computing integration," where new storage technologies like PCM and MRAM are not just replacements but catalysts for MCU architecture transformation [19]. - The merging of storage and computing functions is becoming increasingly important in the context of AI, edge computing, and the growing complexity of computational tasks [21]. Conclusion - The MCU landscape is evolving from a focus on basic control systems to a more integrated approach where storage plays a critical role in computing architecture, driven by advancements in embedded storage technologies [23]. - This transformation presents both challenges and opportunities for domestic MCU manufacturers, who must adapt to the rapidly changing technological landscape [23].