端到端量产
Search documents
明日开课!端到端量产究竟在做什么?我们筹备了一门落地课程...
自动驾驶之心· 2025-11-29 02:06
Core Viewpoint - The article emphasizes the importance of end-to-end production in the automotive industry, highlighting the scarcity of qualified talent and the need for comprehensive training programs to address various challenges in this field [1][3]. Course Overview - The course is designed to cover essential algorithms related to end-to-end production, including single-stage and two-stage frameworks, reinforcement learning applications, and trajectory optimization [3][9]. - It aims to provide practical experience and insights into production challenges, focusing on real-world applications and expert guidance [3][16]. Course Structure - Chapter 1 introduces the overview of end-to-end tasks, discussing the integration of perception and control algorithms, and the importance of efficient data handling [9]. - Chapter 2 focuses on the two-stage end-to-end algorithm framework, explaining its modeling and information transfer processes [10]. - Chapter 3 covers the single-stage end-to-end algorithm framework, emphasizing its advantages in information transmission and performance [11]. - Chapter 4 discusses the application of navigation information in autonomous driving, detailing the formats and encoding methods of navigation maps [12]. - Chapter 5 introduces reinforcement learning algorithms, highlighting their necessity in complementing imitation learning for better generalization [13]. - Chapter 6 involves practical projects on trajectory output optimization, combining imitation and reinforcement learning techniques [14]. - Chapter 7 presents fallback strategies for trajectory planning, focusing on smoothing algorithms to enhance output reliability [15]. - Chapter 8 shares production experiences from various perspectives, offering strategies for optimizing system capabilities [16]. Target Audience - The course is aimed at advanced learners with a foundational understanding of autonomous driving algorithms, reinforcement learning, and programming skills [17][18].
端到端量产这件「小事」,做过的人才知道有多痛
自动驾驶之心· 2025-11-24 00:03
Core Insights - The article emphasizes the growing demand for end-to-end production talent in the automotive industry, highlighting a paradox where job seekers are abundant, yet companies struggle to find qualified candidates [1][3]. Course Overview - A newly designed end-to-end production course aims to address the skills gap in the industry, focusing on practical applications and real-world scenarios over three months [3][5]. - The course covers essential algorithms such as one-stage and two-stage end-to-end frameworks, reinforcement learning applications, and trajectory optimization techniques [5][10]. Course Content - **Chapter 1: Overview of End-to-End Tasks** - Discusses the integration of perception tasks and the learning-based control algorithms that are becoming mainstream in autonomous driving [10]. - **Chapter 2: Two-Stage End-to-End Algorithms** - Introduces the two-stage framework, its modeling methods, and the flow of information between perception and planning [11]. - **Chapter 3: One-Stage End-to-End Algorithms** - Focuses on one-stage frameworks that allow for lossless information transfer, enhancing performance compared to two-stage methods [12]. - **Chapter 4: Application of Navigation Information** - Explains the critical role of navigation data in autonomous driving and how it can be effectively integrated into end-to-end models [13]. - **Chapter 5: Introduction to Reinforcement Learning Algorithms** - Highlights the necessity of reinforcement learning to complement imitation learning, enabling machines to generalize better [14]. - **Chapter 6: Trajectory Output Optimization** - Covers practical projects involving imitation learning and reinforcement learning algorithms for trajectory planning [15]. - **Chapter 7: Contingency Planning - Spatiotemporal Joint Planning** - Discusses post-processing logic to ensure reliable trajectory outputs, including smoothing algorithms [16]. - **Chapter 8: Experience Sharing in End-to-End Production** - Provides insights on practical strategies and tools for enhancing system capabilities in real-world applications [17]. Target Audience - The course is designed for advanced learners with a foundational understanding of autonomous driving algorithms, reinforcement learning, and programming skills [18][19]. Course Schedule - The course is set to begin on November 30, with a structured timeline for unlocking chapters and providing support through offline videos and online Q&A sessions [20].
从目前的信息来看,端到端的落地上限应该很高......
自动驾驶之心· 2025-11-12 00:04
Core Insights - The article highlights significant developments in the autonomous driving industry, particularly the performance of Horizon HSD and the advancements in Xiaopeng's VLA2.0, indicating a shift towards end-to-end production models [1][3]. Group 1: Industry Developments - Horizon HSD's performance has exceeded expectations, marking a return to the industry's focus on one-stage end-to-end production, which has a high potential ceiling [1]. - Xiaopeng's VLA2.0, which integrates visual and language inputs, reinforces the notion that value-added (VA) capabilities are central to autonomous driving technology [1]. Group 2: Educational Initiatives - The article discusses a new course titled "Practical Class for End-to-End Production," aimed at sharing production experiences in autonomous driving, focusing on various methodologies including one-stage and two-stage frameworks, reinforcement learning, and trajectory optimization [3][8]. - The course is limited to 40 participants, emphasizing a targeted approach to skill development in the industry [3][5]. Group 3: Course Structure - The course consists of eight chapters covering topics such as end-to-end task overview, two-stage and one-stage algorithm frameworks, navigation information applications, reinforcement learning algorithms, trajectory output optimization, fallback solutions, and production experience sharing [8][9][10][11][12][13][14][15]. - Each chapter is designed to build upon the previous one, providing a comprehensive understanding of the end-to-end production process in autonomous driving [16]. Group 4: Target Audience and Requirements - The course is aimed at advanced learners with a background in autonomous driving algorithms, reinforcement learning, and programming skills, although it is also accessible to those with less experience [16][17]. - Participants are required to have a GPU with recommended specifications and a foundational understanding of relevant mathematical concepts [17].