端到端量产
Search documents
端到端量产这件「小事」,做过的人才知道有多痛
自动驾驶之心· 2025-11-24 00:03
点击下方 卡片 ,关注" 自动驾驶之心 "公众号 戳我-> 领取 自动驾驶近30个 方向 学习 路线 端到端作为这两年的量产关键词,是各家车企核心的招聘岗位。但市面上真正的量产人才少之又少,从模型优化、场景优化、数据优化,再到下游的规划兜底,端 到端其实是一个全栈的岗位,所以就出现一个神奇的现象:一方面求职者哀鸿遍野,另一方面企业招不到人。。。 从技术的成熟度和工业界的需求来看,端到端需要攻克的难题还有很多。导航信息的引入、强化学习调优、轨迹的建模及优化都有很多门道,目前也是量产第一 线。 为此我们花了三个月的时间设计了端到端量产进阶课程,从实战到落地层层展开。 该课程涉及的核心算法包括:一段式端到端、两段式端到端、导航信息的量产应用、开闭环强化学习、扩散模型+强化学习、自回归+强化学习、时空联合规划等 等,最后分享一些实际的量产经验。很多想进阶或者跳槽的同学苦于没有专家辅导,想转行但实际工作中无法接触到实际的量产优化,简历上往往不够亮眼,遇到 问题连个请教的人都没有。 这门课程是自动驾驶之心联合工业界算法专家开设的《面向量产的端到端实战小班课》!课程只有一个重点:聚焦量产。从一段式、两段式、强化学习、导航应 ...
从目前的信息来看,端到端的落地上限应该很高......
自动驾驶之心· 2025-11-12 00:04
Core Insights - The article highlights significant developments in the autonomous driving industry, particularly the performance of Horizon HSD and the advancements in Xiaopeng's VLA2.0, indicating a shift towards end-to-end production models [1][3]. Group 1: Industry Developments - Horizon HSD's performance has exceeded expectations, marking a return to the industry's focus on one-stage end-to-end production, which has a high potential ceiling [1]. - Xiaopeng's VLA2.0, which integrates visual and language inputs, reinforces the notion that value-added (VA) capabilities are central to autonomous driving technology [1]. Group 2: Educational Initiatives - The article discusses a new course titled "Practical Class for End-to-End Production," aimed at sharing production experiences in autonomous driving, focusing on various methodologies including one-stage and two-stage frameworks, reinforcement learning, and trajectory optimization [3][8]. - The course is limited to 40 participants, emphasizing a targeted approach to skill development in the industry [3][5]. Group 3: Course Structure - The course consists of eight chapters covering topics such as end-to-end task overview, two-stage and one-stage algorithm frameworks, navigation information applications, reinforcement learning algorithms, trajectory output optimization, fallback solutions, and production experience sharing [8][9][10][11][12][13][14][15]. - Each chapter is designed to build upon the previous one, providing a comprehensive understanding of the end-to-end production process in autonomous driving [16]. Group 4: Target Audience and Requirements - The course is aimed at advanced learners with a background in autonomous driving algorithms, reinforcement learning, and programming skills, although it is also accessible to those with less experience [16][17]. - Participants are required to have a GPU with recommended specifications and a foundational understanding of relevant mathematical concepts [17].