Workflow
自适应思考
icon
Search documents
DeepSeek、GPT-5都在尝试的快慢思考切换,有了更智能版本,还是多模态
机器之心· 2025-09-01 06:46
Core Insights - The article discusses the development of the R-4B multimodal large model by Tencent and the Institute of Automation, Chinese Academy of Sciences, which addresses the "overthinking" dilemma in AI models by introducing an adaptive thinking mechanism [3][5][10]. Group 1: Model Development and Performance - R-4B utilizes an "auto-thinking" mechanism that allows the AI to switch between direct responses for simple questions and deep reasoning for complex problems, optimizing accuracy while minimizing computational costs [5][21]. - The model has set a new performance benchmark among 4B-scale multimodal models, outperforming larger models like Keye-VL-8B and Kimi-VL-A3B-Thinking-2506 in various evaluation metrics [7][24]. - R-4B achieved top rankings on the OpenCompass multimodal academic leaderboard, specifically ranking first among multimodal models under 20B in size [10][12]. Group 2: Training Methodology - The core innovation of R-4B lies in its unique two-stage training strategy, which includes bi-mode annealing to teach the model both thinking and non-thinking capabilities [16][18]. - The model's training involves a mix of data types, where it learns to respond directly to simple queries and engage in detailed reasoning for complex tasks, laying a solid foundation for adaptive thinking [18][22]. - The Bi-mode Policy Optimization (BPO) reinforcement learning algorithm allows the model to learn when to switch thinking modes without relying on specifically designed reward functions [18][24]. Group 3: Applications and Future Prospects - R-4B's adaptive thinking capability enhances automation efficiency in various applications, such as document content extraction and scientific research, where it can analyze complex data relationships [27][29]. - The model is designed for deployment on consumer-grade devices, making it suitable for low-power scenarios like smart homes and instant Q&A systems [12][29]. - The lightweight and intelligent design of R-4B contributes to sustainable development in AI, addressing the rising costs of computation and reasoning [33][34].