视触融合
Search documents
能“称大象”,也能“称蚂蚁”!打通机器人“进家”最后一公里
Zhong Guo Zheng Quan Bao· 2025-12-02 05:10
"没有力传感器,机器人的精细操作几乎不可能——它就像给机器人装上了'末端神经',让冰冷的机械 拥有感知力。"蓝点触控创始人、董事长刘吴月手持一款六维力传感器,向中国证券报记者解释这一核 心零部件的关键价值,"我们希望它既能'称大象',也能'称蚂蚁',有了这样的精准度,人形机器人才能 具备'类人'的操作灵活性,真正走进更多场景、走进千家万户"。 在具身智能的发展进程中,很多人更关注软件与模型的突破,但刘吴月认为硬件迭代同样关键。"人形 机器人的自由度极高,要让这么多自由度可靠、精准地执行'大脑'指令,难度极大,硬件产品必须持续 迭代。" 他坦言,目前通过软硬件配合,人形机器人虽能完成 "递一杯水" 这类任务,但操作效率可能 只有人类得20%,未来软硬件各环节都有巨大提升空间。 市场爆发 "无论是叠衣服、拿鸡蛋等日常任务,还是与老人、孩子等接触,机器人都需要精准的力感知功能,这 既是操作基础,也是安全保障。"刘吴月介绍,蓝点触控的六维传感器在力感知测量上能达到0.1牛的精 度,相当于一枚矿泉水瓶盖的重量,这种极致精准度让机器人在操作时灵敏而可靠。 六维传感器的技术应用可追溯至航空航天的极端场景。在航天器对接过程中 ...
人形机器人做汉堡火了! 伯克利等全新ViTacFormer让机器人操作稳如老手
机器之心· 2025-07-10 06:07
Core Viewpoint - The article discusses the advancements in humanoid robots, particularly focusing on the ViTacFormer framework that integrates visual and tactile information for dexterous manipulation tasks, showcasing its potential to revolutionize kitchen automation and other complex tasks [1][4][24]. Group 1: Technology and Innovation - The ViTacFormer framework is designed to enhance precision, stability, and continuous control in dexterous manipulation by combining visual and tactile data with a predictive mechanism for future tactile feedback [4][11]. - The system utilizes a dual-arm robot setup equipped with advanced tactile sensors and cameras to gather real-time data during operations, allowing for a comprehensive understanding of contact dynamics [13][14]. - ViTacFormer employs a cross-modal attention mechanism and an autoregressive tactile prediction branch, enabling the model to anticipate future contact states, thus improving action generation and overall task performance [9][11][24]. Group 2: Experimental Validation - The performance of ViTacFormer was evaluated through various short-range dexterous manipulation tasks, demonstrating a significant improvement in success rates, with an average increase of over 50% compared to existing methods [22][24]. - In a long-duration task simulating the complete process of making a hamburger, ViTacFormer achieved a continuous operation time of approximately 2.5 minutes with an overall success rate exceeding 80%, highlighting its effectiveness in complex, multi-stage tasks [28].