Workflow
非流动性冲击因子
icon
Search documents
东方因子周报:Trend风格登顶,非流动性冲击因子表现出色-2025-04-06
Orient Securities· 2025-04-06 08:13
Quantitative Models and Factor Analysis Quantitative Factors and Construction Methods - **Factor Name**: Non-liquidity Shock **Construction Idea**: Measures the impact of illiquidity on stock returns **Construction Process**: Calculated as the average absolute daily return over the past 20 trading days divided by the corresponding daily trading volume[6][16][19] **Evaluation**: Demonstrated strong performance across multiple indices, indicating its effectiveness in capturing illiquidity effects[6][19][21] - **Factor Name**: Six-Month UMR **Construction Idea**: Captures momentum adjusted for risk over a six-month window **Construction Process**: Risk-adjusted momentum is calculated using a six-month rolling window, incorporating volatility adjustments[6][16][19] **Evaluation**: Consistently performed well in recent periods, showing robustness across different market conditions[6][19][21] - **Factor Name**: One-Year UMR **Construction Idea**: Similar to Six-Month UMR but uses a one-year window for risk-adjusted momentum **Construction Process**: Momentum is adjusted for risk using a one-year rolling window, factoring in volatility[6][16][19] **Evaluation**: Effective in capturing long-term momentum trends, though performance varies by index[6][19][21] - **Factor Name**: Three-Month Volatility **Construction Idea**: Measures short-term price fluctuations **Construction Process**: Calculated as the standard deviation of daily returns over the past 60 trading days[6][16][19] **Evaluation**: Demonstrated strong negative correlation with returns, indicating its utility in identifying high-risk assets[6][19][21] - **Factor Name**: One-Month Turnover **Construction Idea**: Reflects trading activity and liquidity over a short period **Construction Process**: Average daily turnover rate over the past 20 trading days[6][16][19] **Evaluation**: Effective in capturing liquidity dynamics, though performance varies across indices[6][19][21] Factor Backtesting Results - **Non-liquidity Shock**: - Recent Week: 0.58% (HS300), 0.91% (CSI500), 0.93% (CSI800), 0.87% (CSI1000), 1.14% (CSI All)[19][23][27][31][42] - Recent Month: 0.31% (HS300), 0.64% (CSI500), 0.77% (CSI800), 2.40% (CSI1000), 1.33% (CSI All)[19][23][27][31][42] - **Six-Month UMR**: - Recent Week: 0.54% (HS300), -0.09% (CSI500), 0.57% (CSI800), 0.73% (CSI1000), 0.73% (CSI All)[19][23][27][31][42] - Recent Month: 1.53% (HS300), 2.09% (CSI500), 2.35% (CSI800), 3.49% (CSI1000), 3.85% (CSI All)[19][23][27][31][42] - **One-Year UMR**: - Recent Week: 0.46% (HS300), 0.06% (CSI500), 0.88% (CSI800), 0.52% (CSI1000), 0.76% (CSI All)[19][23][27][31][42] - Recent Month: 1.15% (HS300), 2.19% (CSI500), 2.50% (CSI800), 2.85% (CSI1000), 3.74% (CSI All)[19][23][27][31][42] - **Three-Month Volatility**: - Recent Week: 0.24% (HS300), 0.78% (CSI500), 0.59% (CSI800), 0.65% (CSI1000), 0.86% (CSI All)[19][23][27][31][42] - Recent Month: 0.84% (HS300), 3.24% (CSI500), 2.17% (CSI800), 3.63% (CSI1000), 3.60% (CSI All)[19][23][27][31][42] - **One-Month Turnover**: - Recent Week: -0.05% (HS300), 0.48% (CSI500), 0.04% (CSI800), 0.57% (CSI1000), 0.50% (CSI All)[19][23][27][31][42] - Recent Month: 0.19% (HS300), 2.47% (CSI500), 0.19% (CSI800), 3.87% (CSI1000), 1.65% (CSI All)[19][23][27][31][42] Quantitative Model Construction - **Model Name**: Maximized Factor Exposure Portfolio (MFE) **Construction Idea**: Optimizes portfolio weights to maximize exposure to a single factor while controlling for constraints **Construction Process**: - Objective Function: Maximize $f^T w$, where $f$ is the factor value and $w$ is the weight vector - Constraints: Include style exposure, industry deviation, stock weight limits, turnover, and full investment constraints - Formula: $\begin{array}{ll}max&f^{T}w\\ s.t.&s_{l}\leq X(w-w_{b})\leq s_{h}\\ &h_{l}\leq H(w-w_{b})\leq h_{h}\\ &w_{l}\leq w-w_{b}\leq w_{h}\\ &b_{l}\leq B_{b}w\leq b_{h}\\ &0\leq w\leq l\\ &1^{T}w=1\\ &\Sigma|w-w_{0}|\leq to_{h}\end{array}$[57][58][61] **Evaluation**: Provides a robust framework for testing factor effectiveness under realistic constraints[57][58][61] Model Backtesting Results - **MFE Portfolio**: - Demonstrated strong performance in capturing factor-specific returns while adhering to constraints such as turnover and industry exposure[57][58][61]