Workflow
AI异构计算
icon
Search documents
研判2025!中国刀片式服务器行业分类、市场规模及重点企业分析:规模扩张与国产化共塑关键窗口期,高端竞争蓄势待发[图]
Chan Ye Xin Xi Wang· 2025-12-15 01:42
二、行业发展历程 内容概况:当前,中国刀片式服务器行业正处在由技术升级、市场应用深化和供应链自主化等多重力量 共同驱动的关键发展窗口期,整体呈现出"市场规模持续扩张与产业链国产化进程加速"的双轨并行特 征。2024年,中国刀片式服务器行业市场规模约为150.7亿元,同比增长2.8%。这一增长不仅得益于云 计算、人工智能等下游需求对高密度算力基础设施的强劲拉动,也反映了国产CPU、操作系统等关键技 术的成熟与渗透。在政策引导和市场需求的双轮驱动下,国内刀片服务器产业正加速从依赖国际品牌向 自主可控的生态体系演进,头部企业通过技术创新与生态整合不断提升市场竞争力,未来有望在高端市 场与国际巨头展开更深入的角逐。 相关上市企业:紫光股份(000938)、曙光股份(603019)、浪潮信息(000977)、联想集团 (00992) 相关企业:宝山钢铁股份有限公司、抚顺特殊钢股份有限公司、中芯国际集成电路制造有限公司、中微 半导体设备(上海)股份有限公司、北方华创科技集团股份有限公司、海光信息技术股份有限公司、龙 芯中科技术股份有限公司、鹏鼎控股(深圳)股份有限公司、健鼎(无锡)电子有限公司、立讯精密工 业股份有限公司 ...
联想万全异构智算研发团队论文被IEEE CyberSciTech 2025收录
Huan Qiu Wang· 2025-11-28 09:37
Core Insights - Lenovo's RNL technology addresses long-standing challenges in RoCE network load balancing for AI training and inference scenarios, showcasing innovation in multi-dimensional perception, path load balancing optimization, and incremental flow migration [1][2]. Group 1: RNL Technology Overview - The RNL technology integrates multi-dimensional perception, path load balancing optimization, and incremental flow migration into a closed-loop system, providing both algorithmic innovation and practical value [1]. - The multi-dimensional perception mechanism allows real-time awareness of network topology, AI task network demands, and RoCE link load status, forming a data foundation for dynamic scheduling [1]. - Path load balancing optimization employs virtual-physical network mapping and path scoring algorithms to intelligently select optimal data transmission paths, maximizing bandwidth utilization [1]. Group 2: Performance and Cost Efficiency - RNL technology demonstrates high reliability and dual advantages in enhancing AI business efficiency and reducing total cost of ownership (TCO) [2]. - Performance improvements include a 50% enhancement in communication primitive performance, 85% bandwidth utilization, and a 90% reduction in load balancing discreteness [2]. - In AI inference scenarios, transactions per second (TPS) increased by 26%, time to first byte (TTFT) decreased by 30%, and time per output token (TPOT) reduced by 22%, while overall deployment costs were lowered by 60% [2]. Group 3: Strategic Implications - RNL technology is incorporated into Lenovo's heterogeneous computing platform, reinforcing its technological barriers in the AI heterogeneous computing market and enhancing its industry influence and core competitiveness [4].