Knowledge Distillation
Search documents
5秒出4张2K大图!阿里提出2步生成方案,拉爆AI生图进度条
量子位· 2026-01-30 11:02
允中 发自 凹非寺 量子位 | 公众号 QbitAI AI生成一张图片,你愿意等多久? 在主流扩散模型还在迭代中反复"磨叽"、让用户盯着进度条发呆时, 阿里智能引擎 团队直接把进度条"拉爆"了—— 5秒钟 ,到手 4张2K级 高清大图。 针对Qwen最新开源模型,将SOTA压缩水平从80-100步前向计算,骤降至 2步 (Step) ,速度提升整整 40倍 。 这意味着,此前像Qwen-Image这样需要近一分钟才能吐出来的一张图片,现在真的成了"眨眼之间"。 目前,团队已将相应的Checkpoint发布至HuggingFace和ModelScope平台,欢迎开发者下载体验: 同时,该模型已经集成到呜哩AI平台上(https://www.wuli.art)支持调用。 上述这种近乎"物理外挂"般的蒸馏方案,究竟是怎么做到的?一起来看。 传统轨迹蒸馏的"细节困境" 早期的蒸馏方案[1,2],往往可以被归纳为 轨迹蒸馏(Trajectory Distillation) 。 具体来看,其本身主要思想是希望 蒸馏后模型(student model) 能够模仿 原模型(teacher model) 在多步生成的路径: 但 ...
图灵奖得主Hinton国内首次现身演讲:AI超越人类后,我们该怎么做
机器之心· 2025-07-26 08:19
Core Viewpoint - The future of AI is likely to surpass human intelligence, leading to significant implications for society and the relationship between humans and AI [1][47]. Group 1: AI Development and Understanding - AI has evolved through two paradigms: logical reasoning and learning through neural networks, with the latter being more aligned with human thought processes [5][12]. - Large language models (LLMs) are seen as descendants of earlier models, utilizing more complex structures and interactions to understand language similarly to humans [12][25]. - The understanding of language in LLMs is compared to building with LEGO blocks, where words are multi-dimensional and can adapt based on context [16][19]. Group 2: Knowledge Transfer and Efficiency - The efficiency of knowledge transfer in AI is significantly higher than in human communication, allowing for rapid sharing of information across multiple instances of AI [37][40]. - Digital intelligence can replicate and share model weights and experiences, leading to a collaborative learning environment that surpasses human capabilities [39][41]. Group 3: Implications of Advanced AI - As AI systems become more intelligent, they may develop motivations for survival and control, potentially leading to challenges in managing these systems [47][48]. - The relationship between humans and advanced AI could shift, with AI becoming more autonomous and capable of influencing human decisions [49][52]. - The necessity for international cooperation in AI safety and governance is emphasized, as the risks associated with advanced AI systems are global in nature [59][62].
Google首席科学家万字演讲回顾AI十年:哪些关键技术决定了今天的大模型格局?
机器人圈· 2025-04-30 09:10
Google 首席科学家Jeff Dean 今年4月于在苏黎世联邦理工学院发表关于人工智能重要趋势的演讲,本次演讲回顾 了奠定现代AI基础的一系列关键技术里程碑,包括神经网络与反向传播、早期大规模训练、硬件加速、开源生 态、架构革命、训练范式、模型效率、推理优化等。算力、数据量、模型规模扩展以及算法和模型架构创新对AI 能力提升的关键作用。 以下是本次演讲 实录 经数字开物团队编译整理 01 AI 正以前所未有的规模和算法进步改变计算范式 Jeff Dean: 今天我将和大家探讨 AI 的重要趋势。我们会回顾:这个领域是如何发展到今天这个模型能力水平的?在当前的技 术水平下,我们能做些什么?以及,我们该如何塑造 AI 的未来发展方向? 这项工作是与 Google 内外的众多同仁共同完成的,所以并非全是我个人的成果,其中许多是合作研究。有些工作 甚至并非由我主导,但我认为它们都非常重要,值得在此与大家分享和探讨。 我们先来看一些观察发现,其中大部分对在座各位而言可能显而易见。首先,我认为最重要的一点是,机器学习 彻底改变了我们对计算机能力的认知和期待。回想十年前,当时的计算机视觉技术尚处初级阶段,计算机几乎谈 ...