《自动驾驶VLA实战课程》
Search documents
基于模仿学习的端到端决定了它的上限不可能超越人类
自动驾驶之心· 2025-09-24 06:35
Core Viewpoint - The article discusses the evolution of end-to-end (E2E) autonomous driving technology, emphasizing the transition from rule-based to data-driven approaches, and highlights the limitations of current models in handling complex scenarios. It introduces Visual Language Models (VLM) and Visual Language Agents (VLA) as potential solutions to enhance the capabilities of autonomous driving systems [2][3]. Summary by Sections Introduction to VLA - VLA represents a shift from merely imitating human behavior to understanding and interacting with the physical world, addressing the limitations of traditional E2E models in complex driving scenarios [2]. Challenges in Autonomous Driving - The VLA technology stack is still evolving, with numerous algorithms emerging, indicating a lack of convergence in the field [3]. Course Overview - A course titled "Autonomous Driving VLA and Large Model Practical Course" is being prepared to address various aspects of VLA, including its origins, algorithms, and practical applications [5]. Learning Objectives - The course aims to provide a comprehensive understanding of VLA, covering topics such as data set creation, model training, and performance enhancement [5][17]. Course Structure - The course is structured into several chapters, each focusing on different aspects of VLA, including algorithm introduction, foundational knowledge, VLM as an interpreter, modular and integrated VLA, reasoning enhancement, and practical assignments [20][26][31][34][36]. Instructor Background - The instructors have extensive experience in multimodal perception, autonomous driving, and large model frameworks, contributing to the course's credibility [38]. Expected Outcomes - Participants are expected to gain a thorough understanding of current advancements in VLA, master core algorithms, and be able to apply their knowledge in practical settings [39][40]. Course Schedule - The course is set to begin on October 20, with a structured timeline for each chapter's release [43].
自动驾驶VLA发展到哪个阶段了?现在还适合搞研究吗?
自动驾驶之心· 2025-09-22 08:04
Core Insights - The article discusses the transition in intelligent driving technology from rule-driven to data-driven approaches, highlighting the emergence of VLA (Vision-Language Action) as a more straightforward and effective method compared to traditional end-to-end systems [1][2] - The challenges in the current VLA technology stack are emphasized, including the complexity and fragmentation of knowledge, which makes it difficult for newcomers to enter the field [2][3] - A new practical course on VLA has been developed to address these challenges, providing a structured learning path for students interested in advanced knowledge in autonomous driving [3][4][5] Summary by Sections Introduction to VLA - The article introduces VLA as a significant advancement in autonomous driving, offering a cleaner approach than traditional end-to-end systems, while also addressing corner cases more effectively [1] Challenges in Learning VLA - The article outlines the difficulties faced by learners in navigating the complex and fragmented knowledge landscape of VLA, which includes a plethora of algorithms and a lack of high-quality documentation [2] Course Development - A new course titled "Autonomous Driving VLA Practical Course" has been created to provide a comprehensive overview of the VLA technology stack, aiming to facilitate easier entry into the field for students [3][4] Course Features - The course is designed to address key pain points, offering quick entry into the subject matter through accessible language and examples [3] - It aims to build a framework for understanding VLA research and enhance research capabilities by teaching students how to categorize papers and extract innovative points [4] - The course includes practical components to ensure that theoretical knowledge is effectively applied in real-world scenarios [5] Course Outline - The course covers various topics, including the origins of VLA, foundational algorithms, and the differences between modular and integrated VLA systems [6][15][19][20] - It also includes practical coding exercises and projects to reinforce learning and application of concepts [22][24][26] Instructor Background - The course is led by experienced instructors with a strong background in multi-modal perception, autonomous driving, and large model frameworks, ensuring high-quality education [27] Learning Outcomes - Upon completion, students are expected to have a thorough understanding of current advancements in VLA, core algorithms, and the ability to apply their knowledge in practical settings [28][29]