Workflow
《端到端与VLA自动驾驶小班课》
icon
Search documents
公司通知团队缩减,懂端到端的留下来了。。。
自动驾驶之心· 2025-08-19 23:32
Core Viewpoint - The article discusses the rapid evolution and challenges in the field of end-to-end autonomous driving technology, emphasizing the need for a comprehensive understanding of various algorithms and models to succeed in this competitive industry [2][4][6]. Group 1: Industry Trends - The shift from modular approaches to end-to-end systems in autonomous driving aims to eliminate cumulative errors between modules, marking a significant technological leap [2]. - The emergence of various algorithms and models, such as UniAD and BEV perception, indicates a growing focus on integrating multiple tasks into a unified framework [4][9]. - The demand for knowledge in multi-modal large models, reinforcement learning, and diffusion models is increasing, reflecting the industry's need for versatile skill sets [5][20]. Group 2: Learning Challenges - New entrants face difficulties due to the fragmented nature of knowledge and the overwhelming volume of research papers in the field, often leading to early abandonment of learning [5][6]. - The lack of high-quality documentation and practical guidance further complicates the transition from theory to practice in end-to-end autonomous driving research [5][6]. Group 3: Course Offerings - A new course titled "End-to-End and VLA Autonomous Driving" has been developed to address the learning challenges, focusing on practical applications and theoretical foundations [6][24]. - The course is structured to provide a comprehensive understanding of end-to-end algorithms, including their historical development and current trends [11][12]. - Practical components, such as real-world projects and assignments, are included to ensure that participants can apply their knowledge effectively [8][21]. Group 4: Course Content Overview - The course covers various topics, including the introduction to end-to-end algorithms, background knowledge on relevant technologies, and detailed explorations of both one-stage and two-stage end-to-end methods [11][12][13]. - Specific chapters focus on advanced topics like world models and diffusion models, which are crucial for understanding the latest advancements in autonomous driving [15][17][20]. - The final project involves practical applications of reinforcement learning from human feedback (RLHF), allowing participants to gain hands-on experience [21].
即将开课!彻底搞懂端到端与VLA全栈技术(一段式/二段式/VLA/扩散模型)
自动驾驶之心· 2025-08-05 23:32
Core Viewpoint - The article highlights the launch of the Li Auto i8, which features significant upgrades in its driver assistance capabilities, particularly through the integration of the VLA (Vision-Language-Action) model, marking a milestone in the mass production of autonomous driving technology [2][3]. Summary by Sections VLA Model Capabilities - The VLA model enhances understanding of semantics through multimodal input, improves reasoning with a thinking chain, and aligns more closely with human driving intuition. Its four core capabilities include spatial understanding, reasoning ability, communication and memory, and behavioral ability [3][6]. Industry Development - The VLA represents a new milestone in the mass production of autonomous driving, with many companies investing in human resources for research and development. The transition from E2E (End-to-End) and VLM (Vision-Language Model) to VLA indicates a progressive technological evolution [5][8]. Educational Initiatives - In response to the growing interest in transitioning to VLA-related roles, the industry has launched a specialized course titled "End-to-End and VLA Autonomous Driving Small Class," aimed at providing in-depth knowledge of the algorithms and technical development in this field [7][15]. Course Structure and Content - The course covers various aspects of end-to-end algorithms, including historical development, background knowledge, and specific methodologies such as two-stage and one-stage end-to-end approaches. It emphasizes practical applications and theoretical foundations [21][22][23][24]. Job Market Insights - The demand for VLA/VLM algorithm experts is high, with salary ranges for positions varying based on experience and educational background. For instance, positions for VLA/VLM algorithm engineers typically offer salaries between 35K to 70K for those with 3-5 years of experience [11]. Learning Outcomes - Participants in the course are expected to achieve a level of understanding equivalent to that of an autonomous driving algorithm engineer with one year of experience, covering key technologies such as BEV perception, multimodal models, and reinforcement learning [32].
70K?端到端VLA现在这么吃香!?
自动驾驶之心· 2025-07-21 11:18
Core Viewpoint - End-to-end (E2E) autonomous driving is currently the core algorithm for mass production in intelligent driving, with significant advancements in the VLA (Vision-Language Architecture) and VLM (Vision-Language Model) systems, leading to high demand for related positions in the industry [2][4]. Summary by Sections Section 1: Background Knowledge - The course aims to provide a comprehensive understanding of end-to-end autonomous driving, including its historical development and the transition from modular to end-to-end approaches [21]. - Key technical stacks such as VLA, diffusion models, and reinforcement learning are essential for understanding the current landscape of autonomous driving technology [22]. Section 2: Job Market Insights - Positions related to VLA/VLM algorithms offer lucrative salaries, with 3-5 years of experience earning between 40K to 70K monthly, and top talents in the field can earn up to 1 million annually [10]. - The demand for VLA-related roles is increasing, indicating a shift in the industry towards advanced model architectures [9]. Section 3: Course Structure - The course is structured into five chapters, covering topics from basic concepts of end-to-end algorithms to advanced applications in VLA and reinforcement learning [19][30]. - Practical components are included to bridge the gap between theory and application, ensuring participants can implement learned concepts in real-world scenarios [18]. Section 4: Technical Innovations - Various approaches within end-to-end frameworks are explored, including two-stage and one-stage methods, with notable models like PLUTO and UniAD leading the way [4][23]. - The introduction of diffusion models has revolutionized trajectory prediction, allowing for better adaptability in uncertain driving environments [24]. Section 5: Learning Outcomes - Participants are expected to achieve a level of proficiency equivalent to one year of experience as an end-to-end autonomous driving algorithm engineer, mastering key technologies and frameworks [32]. - The course emphasizes the importance of understanding BEV perception, multimodal models, and reinforcement learning to stay competitive in the evolving job market [32].
面试了很多端到端候选人,还是有很多人搞不清楚。。。
自动驾驶之心· 2025-07-20 08:36
Core Viewpoint - End-to-End Autonomous Driving is a key algorithm for intelligent driving mass production, with significant salary potential for related positions, and it has evolved into various technical directions since the introduction of UniAD [2][4]. Group 1: Technical Directions - End-to-End Autonomous Driving can be categorized into one-stage and two-stage approaches, with various subfields emerging under each category [2][4]. - The core advantage of end-to-end systems is the direct modeling from sensor input to vehicle planning/control information, avoiding error accumulation seen in modular methods [2]. - Notable algorithms include PLUTO for two-stage end-to-end, UniAD for perception-based one-stage, OccWorld for world model-based one-stage, and DiffusionDrive for diffusion model-based one-stage [4]. Group 2: Industry Trends - The demand for VLA/VLM algorithm experts is increasing, with salary ranges for positions requiring 3-5 years of experience being between 40K-70K [9]. - The industry is witnessing a shift towards large model algorithms, with companies focusing on VLA as the next generation of autonomous driving solutions [8][9]. Group 3: Course Offerings - A new course titled "End-to-End and VLA Autonomous Driving" is being offered to help individuals understand the complexities of end-to-end algorithms and their applications [15][28]. - The course covers various topics, including background knowledge, two-stage end-to-end, one-stage end-to-end, and practical applications of reinforcement learning [20][22][24]. - The course aims to provide a comprehensive understanding of the end-to-end framework, including key technologies like BEV perception, multi-modal large models, and diffusion models [31].
端到端VLA这薪资,让我心动了。。。
自动驾驶之心· 2025-07-17 11:10
Core Viewpoint - End-to-End Autonomous Driving (E2E) is identified as the core algorithm for intelligent driving mass production, marking a significant shift in the industry towards more integrated and efficient systems [2][4]. Group 1: Technology Overview - E2E can be categorized into single-stage and two-stage approaches, with the latter gaining traction following the recognition of UniAD at CVPR [2]. - The E2E system directly models the relationship between sensor inputs and vehicle control information, minimizing errors associated with modular approaches [2]. - The introduction of BEV perception has bridged gaps between modular methods, leading to a technological leap in the field [2]. Group 2: Challenges in Learning - The rapid development of E2E technology has made previous educational resources outdated, creating a need for updated learning materials [5]. - The fragmented nature of knowledge across various domains complicates the learning process for newcomers, often leading to abandonment before mastery [5]. - A lack of high-quality documentation in E2E research increases the difficulty of entry into the field [5]. Group 3: Course Development - A new course titled "End-to-End and VLA Autonomous Driving" has been developed to address the challenges faced by learners [6]. - The course aims to provide a quick entry into core technologies using accessible language and examples, facilitating easier expansion into specific knowledge areas [6]. - It focuses on building a framework for understanding E2E research and enhancing research capabilities by categorizing papers and extracting innovative points [7]. Group 4: Course Structure - The course is structured into several chapters, covering topics from the history and evolution of E2E algorithms to practical applications and advanced techniques [11][12][20]. - Key areas of focus include the introduction of E2E algorithms, background knowledge on relevant technologies, and detailed explorations of both single-stage and two-stage methods [11][12][20]. - Practical components are integrated into the curriculum to ensure a comprehensive understanding of theoretical concepts [8]. Group 5: Expected Outcomes - Participants are expected to achieve a level of proficiency equivalent to one year of experience as an E2E autonomous driving algorithm engineer [27]. - The course will cover a wide range of methodologies, including single-stage, two-stage, world models, and diffusion models, providing a holistic view of the E2E landscape [27]. - A deeper understanding of key technologies such as BEV perception, multimodal large models, and reinforcement learning will be developed [27].