Workflow
视觉语言模型VLM
icon
Search documents
随到随学!端到端与VLA自动驾驶小班课正式结课
自动驾驶之心· 2025-12-09 19:00
Core Viewpoint - 2023 marks the year of end-to-end production, with 2024 expected to be a significant year for end-to-end production in the automotive industry, as leading new forces and manufacturers have already achieved end-to-end production [1][3]. Group 1: End-to-End Production Development - The automotive industry has two main paradigms: single-stage and two-stage, with UniAD being a representative of the single-stage approach that directly models vehicle trajectories from sensor inputs [1]. - Since last year, the single-stage end-to-end development has rapidly advanced, leading to various derivatives such as perception-based, world model-based, diffusion model-based, and VLA-based single-stage methods [3][5]. - Major players in the autonomous driving sector, including both solution providers and car manufacturers, are focusing on self-research and production of end-to-end autonomous driving technologies [3]. Group 2: Course Overview - A course titled "End-to-End and VLA Autonomous Driving" has been launched, aimed at teaching cutting-edge algorithms in both single-stage and two-stage end-to-end approaches, with a focus on the latest developments in the industry and academia [5][14]. - The course is structured into several chapters, starting with an introduction to end-to-end algorithms, followed by background knowledge on various technologies such as VLA, diffusion models, and reinforcement learning [8][9]. - The second chapter is highlighted as containing the most frequently asked technical keywords for job interviews in the next two years [9]. Group 3: Technical Focus Areas - The course covers various subfields of single-stage end-to-end methods, including perception-based (UniAD), world model-based, diffusion model-based, and the currently popular VLA-based approaches [10][12]. - The curriculum includes practical assignments, such as RLHF fine-tuning, and aims to provide students with hands-on experience in building and experimenting with pre-trained and reinforcement learning modules [11][12]. - The course emphasizes the importance of understanding BEV perception, multi-modal large models, and the latest advancements in diffusion models, which are crucial for the future of autonomous driving [12][16].
端到端和VLA的岗位,薪资高的离谱......
自动驾驶之心· 2025-11-19 00:03
Core Insights - There is a significant demand for end-to-end and VLA (Vision-Language Agent) technical talent in the automotive industry, with salaries for experts reaching up to $70,000 per month for positions requiring 3-5 years of experience [1] - The technology stack involved in end-to-end and VLA is complex, covering various advanced algorithms and models such as BEV perception, VLM (Vision-Language Model), diffusion models, reinforcement learning, and world models [2] Course Offerings - The company is launching two specialized courses: "End-to-End and VLA Autonomous Driving Class" and "Practical Course on VLA and Large Models," aimed at helping individuals quickly and efficiently enter the field of end-to-end and VLA technologies [2] - The "Practical Course on VLA and Large Models" focuses on VLA, covering topics from VLM as an autonomous driving interpreter to modular and integrated VLA, including mainstream inference-enhanced VLA [2] - The course includes a detailed theoretical foundation and practical assignments, teaching participants how to build their own VLA models and datasets from scratch [2] Instructor Team - The instructor team consists of experts from both academia and industry, including individuals with extensive research and practical experience in multi-modal perception, autonomous driving VLA, and large model frameworks [7][10][13] - Notable instructors include a Tsinghua University master's graduate with multiple publications in top conferences and a current algorithm expert at a leading domestic OEM [7][13] Target Audience - The courses are designed for individuals with a foundational knowledge of autonomous driving, familiar with basic modules, and who have a grasp of concepts related to transformer large models, reinforcement learning, and BEV perception [15] - Participants are expected to have a background in probability theory and linear algebra, as well as proficiency in Python and PyTorch [15]
做了一份端到端进阶路线图,面向落地求职......
自动驾驶之心· 2025-11-18 00:05
Core Insights - There is a significant demand for end-to-end and VLA (Vision-Language Agent) technical talent in the automotive industry, with salaries for experts reaching up to $70,000 per month for positions requiring 3-5 years of experience [1] - The technology stack for end-to-end and VLA is complex, involving various advanced algorithms such as BEV perception, Vision-Language Models (VLM), diffusion models, reinforcement learning, and world models [1] - The company is offering specialized courses to help individuals quickly and efficiently learn about end-to-end and VLA technologies, collaborating with experts from both academia and industry [1] Course Offerings - The "End-to-End and VLA Autonomous Driving Course" focuses on the macro aspects of end-to-end autonomous driving, covering key algorithms and theoretical foundations, including BEV perception, large language models, diffusion models, and reinforcement learning [10] - The "Autonomous Driving VLA and Large Model Practical Course" is led by academic experts and covers VLA from the perspective of VLM as an autonomous driving interpreter, modular VLA, and current mainstream inference-enhanced VLA [1][10] - Both courses include practical components, such as building a VLA model and dataset from scratch, and implementing algorithms like the Diffusion Planner and ORION algorithm [10][12] Instructor Profiles - The instructors include experienced professionals and researchers from top institutions, such as Tsinghua University and QS30 universities, with backgrounds in multimodal perception, autonomous driving VLA, and large model frameworks [6][9][12] - Instructors have published numerous papers in prestigious conferences and have hands-on experience in developing and deploying advanced algorithms in the field of autonomous driving [6][9][12] Target Audience - The courses are designed for individuals with a foundational knowledge of autonomous driving, familiar with basic modules, and concepts related to transformer large models, reinforcement learning, and BEV perception [14] - Participants are expected to have a background in probability theory and linear algebra, as well as proficiency in Python and PyTorch [14]
工业界和学术界都在怎么搞端到端和VLA?
自动驾驶之心· 2025-10-17 00:03
Core Insights - The article discusses the evolution of end-to-end algorithms in autonomous driving, highlighting the transition from modular production algorithms to end-to-end and now to Vision-Language Alignment (VLA) models [1][3] - It emphasizes the rich technology stack involved in end-to-end algorithms, including BEV perception, visual language models (VLM), diffusion models, reinforcement learning, and world models [3] Summary by Sections End-to-End Algorithms - End-to-end algorithms are categorized into two main paradigms: single-stage and two-stage, with UniAD being a representative of the single-stage approach [1] - Single-stage can further branch into various subfields, particularly those based on VLA, which have seen a surge in related publications and industrial applications in recent years [1] Courses Offered - The article promotes two courses: "End-to-End and VLA Autonomous Driving Small Class" and "Practical Course on Autonomous Driving VLA and Large Models," aimed at helping individuals quickly and efficiently enter the field [3] - The "Practical Course" focuses on VLA, covering topics from VLM as an autonomous driving interpreter to modular and integrated VLA, along with detailed theoretical foundations [3][12] Instructor Team - The instructor team includes experts from both academia and industry, with backgrounds in multi-modal perception, autonomous driving VLA, and large model frameworks [8][11][14] - Notable instructors have published numerous papers in top-tier conferences and have extensive experience in research and practical applications in autonomous driving and large models [8][11][14] Target Audience - The courses are designed for individuals with a foundational understanding of autonomous driving, familiar with basic modules, and have knowledge of transformer models, reinforcement learning, and BEV perception [15][17]
基于模仿学习的端到端决定了它的上限不可能超越人类
自动驾驶之心· 2025-09-24 06:35
Core Viewpoint - The article discusses the evolution of end-to-end (E2E) autonomous driving technology, emphasizing the transition from rule-based to data-driven approaches, and highlights the limitations of current models in handling complex scenarios. It introduces Visual Language Models (VLM) and Visual Language Agents (VLA) as potential solutions to enhance the capabilities of autonomous driving systems [2][3]. Summary by Sections Introduction to VLA - VLA represents a shift from merely imitating human behavior to understanding and interacting with the physical world, addressing the limitations of traditional E2E models in complex driving scenarios [2]. Challenges in Autonomous Driving - The VLA technology stack is still evolving, with numerous algorithms emerging, indicating a lack of convergence in the field [3]. Course Overview - A course titled "Autonomous Driving VLA and Large Model Practical Course" is being prepared to address various aspects of VLA, including its origins, algorithms, and practical applications [5]. Learning Objectives - The course aims to provide a comprehensive understanding of VLA, covering topics such as data set creation, model training, and performance enhancement [5][17]. Course Structure - The course is structured into several chapters, each focusing on different aspects of VLA, including algorithm introduction, foundational knowledge, VLM as an interpreter, modular and integrated VLA, reasoning enhancement, and practical assignments [20][26][31][34][36]. Instructor Background - The instructors have extensive experience in multimodal perception, autonomous driving, and large model frameworks, contributing to the course's credibility [38]. Expected Outcomes - Participants are expected to gain a thorough understanding of current advancements in VLA, master core algorithms, and be able to apply their knowledge in practical settings [39][40]. Course Schedule - The course is set to begin on October 20, with a structured timeline for each chapter's release [43].