Workflow
光子算术计算引擎(Pace)
icon
Search documents
光芯片最大瓶颈,已被消除
半导体行业观察· 2025-05-12 01:03
Core Viewpoint - The article discusses the advancements in photonic chips as a potential replacement for traditional electronic microchips, particularly in the context of increasing demands for computational power driven by artificial intelligence (AI) [1][2]. Group 1: Photonic Chips Advantages - Photonic chips utilize light (photons) instead of electricity (electrons) for information processing, promising higher speed, greater bandwidth, and improved efficiency due to the absence of electrical resistance and heat loss [1]. - They are particularly well-suited for matrix multiplication, a fundamental operation in AI [1]. Group 2: Challenges in Photonic Computing - Converting photons to electrical signals can slow down processing times, and photonic computing relies on analog rather than digital operations, which can reduce precision and limit the types of computations [2]. - The current inability to manufacture large-scale photonic circuits with sufficient precision complicates the transition from small prototypes to scalable solutions [2]. Group 3: Recent Research Developments - A new photonic processor called the Photonic Arithmetic Computing Engine (Pace) was developed by Lightelligence, featuring over 16,000 photonic components and demonstrating low latency and practical application viability [2][3]. - Another photonic processor from Lightmatter was shown to operate with precision comparable to traditional electronic processors, successfully executing AI tasks such as text generation and game playing [3]. Group 4: Future Potential - Both research teams believe their photonic systems could become part of scalable next-generation hardware to support AI applications, although further improvements in materials and design are necessary [3].