Workflow
垂直腔面发射激光器 (VCSEL)
icon
Search documents
VCSEL,还有新机会吗
半导体行业观察· 2025-08-05 01:37
Core Viewpoint - Optical technology has matured in long-distance communication, but its service distance is shrinking, particularly in data centers, with a shift from fiber optics to more compact solutions like waveguides [2]. Group 1: Current Trends in Optical Technology - Vertical-cavity surface-emitting lasers (VCSELs) are driving short fiber links, and there is ongoing research to bring fiber optics closer to data center servers [2]. - The transition of fiber optics from card edges to onboard and now to packaging indicates a significant evolution in optical communication [2]. Group 2: Integration Challenges - The integration of lasers with silicon faces challenges related to reliability, temperature sensitivity, and energy consumption [4]. - Current optical devices rely on distributed feedback lasers (DFB), which are effective for long-distance fiber optics but are more expensive compared to other types [6]. Group 3: Temperature Management - Temperature control is a major challenge for laser developers, as precise temperature management is crucial for maintaining signal integrity [8]. - Experts suggest that isolating lasers from high-temperature chips can enhance performance and reliability [9]. Group 4: VCSEL Applications and Limitations - VCSELs are cost-effective and suitable for short-distance connections, particularly in data centers, but they face challenges in wavelength compatibility with existing optical systems [14]. - Recent advancements have improved the bandwidth of O-band VCSELs, reigniting interest in their use for single-mode fiber applications [15]. Group 5: Future Research Directions - Ongoing research is focused on integrating III-V materials into silicon substrates, although these technologies have not yet reached mass production levels [12]. - Quantum dot (QD) lasers, which are less temperature-sensitive, are also being explored, but their output power remains a limitation [12].
量子传感器,新突破!
半导体行业观察· 2025-04-05 02:35
Core Viewpoint - Quantum sensors are expected to significantly benefit multiple industries due to their enhanced sensitivity and new sensing capabilities compared to traditional sensors [2] Group 1: Quantum Sensor Innovations - Quantum sensors, including atomic clocks, quantum magnetometers, and quantum gyroscopes, are anticipated to revolutionize various sectors [2] - The transition from laboratory prototypes to commercial products requires optimization of size, weight, power, and cost (SWaP-C) [2] - The most effective method for achieving this is through scalable semiconductor manufacturing processes [2] Group 2: Manufacturing Techniques - Glass vapor cells are essential for quantum sensors, enabling interaction between lasers and atomic gas samples [5] - Traditional glassblowing techniques limit the miniaturization of vapor cells, while wafer-level semiconductor manufacturing can produce highly uniform vapor cells for mass production [5] - Innovations in manufacturing techniques, including alternative glass materials and various etching and bonding technologies, are crucial for enhancing performance [5] Group 3: Laser Technology - Lasers are a critical component in quantum sensors, with VCSELs (Vertical-Cavity Surface-Emitting Lasers) being particularly important for their scalability and integration [7][8] - The demand for VCSELs has surged due to their applications in smartphones, automotive infrared cameras, and data center interconnects [7] - VCSELs must meet specific requirements for atomic quantum sensors, including wavelength stability and narrow linewidth [7] Group 4: Market Challenges - The high production costs of quantum sensor components limit their target markets, creating a cycle that restricts scaling and cost reduction [9] - Current manufacturing processes for vapor cells are complex and expensive, necessitating collaboration between academia and industry to support semiconductor manufacturing for emerging quantum technologies [9] Group 5: Future Market Outlook - Innovations in vapor cell and VCSEL manufacturing have enabled the miniaturization of atomic clocks, providing a blueprint for transitioning other quantum sensors to mass production [10] - Semiconductor foundries are positioned to become key players in the quantum sensor value chain, with investments aimed at reducing manufacturing costs opening up larger market opportunities [10] - The demand for improved sensing solutions in timing, magnetic field sensing, and inertial sensing will drive the growth of quantum sensors [10]