Workflow
多尺度双边网格框架
icon
Search documents
NeurIPS 2025|智源&清华带来自驾重建新SOTA!
自动驾驶之心· 2025-12-07 02:05
作者 | xxx 来源 | xxx 原文链接: 点击下方 卡片 ,关注" 自动驾驶之心 "公众号 戳我-> 领取 自动驾驶近30个 方向 学习 路线 >>自动驾驶前沿信息获取 → 自动驾驶之心知识星球 本文只做学术分享,如有侵权,联系删文 以下文章来源于深蓝AI ,作者深蓝学院 深蓝AI . 专注于人工智能、机器人与自动驾驶的学习平台。 「 多尺度双边网格框架 实现几何与视觉渲染质量的双重突破 」 在自动驾驶领域,准确、高效的三维场景重建对于确保安全、避障和可靠导航至关重要。然而, 传统方法常常面临由于光照条件、动态物体等因素引起的光 度不一致和几何不准确问题 。 在自动驾驶技术飞速发展的今天,如何在复杂的动态环境中进行高精度的三维场景重建,依然是自动驾驶系统面临的一大挑战。传统的场景重建方法常常因 为 光照变化 、 视角差异 和 动态物体 的影响,导致 光度不一致 和 几何误差 。 为此, 北京智源人工智能研究院 (BAAI) , 清华大学智能产业研究院 (AIR) 提出了一种 多尺度双边网格 框架 ,能够在不同尺度上对 3D 场景表征进行 局 部 和全局调整,从而有效解决了光度不一致性问题,并提升了几何重 ...
OmniRe全新升级!自驾场景重建色彩渲染和几何渲染双SOTA~
自动驾驶之心· 2025-07-27 14:41
Core Insights - The article discusses a novel multi-scale bilateral grid framework that enhances the geometric accuracy and visual realism of dynamic scene reconstruction in autonomous driving, addressing challenges posed by photometric inconsistency in real-world environments [5][10][12]. Motivation - Neural rendering technologies are crucial for the development and testing of autonomous driving systems, but they heavily rely on photometric consistency among multi-view images. Variations in lighting conditions, weather, and camera parameters introduce significant color inconsistencies, leading to erroneous geometry and distorted textures [5][6]. Existing Solutions - Current solutions are categorized into two main types: global appearance coding and bilateral grids. The proposed framework combines the advantages of both methods to overcome their limitations [6][10]. Key Contributions - The framework introduces a multi-scale bilateral grid that seamlessly integrates global appearance coding and local bilateral grids, allowing adaptive color correction from coarse to fine scales. This significantly improves the geometric accuracy of dynamic driving scene reconstruction and effectively suppresses artifacts like "floaters" [9][10][12]. Method Overview 1. **Scene Representation and Initial Rendering**: The framework employs Gaussian splatting to model complex driving scenes, creating a hybrid scene graph that includes independently modeled elements like sky, static backgrounds, and dynamic objects [12]. 2. **Multi-Scale Bilateral Grid Correction**: The initial rendered image undergoes processing through a hierarchical multi-scale bilateral grid, resulting in a color-consistent, visually realistic high-quality image [13][14]. 3. **Optimization Strategy and Real-World Adaptability**: The model utilizes a coarse-to-fine optimization strategy and a composite loss function to ensure stable training and effective adaptation to real-world variations in image signal processing parameters [15][16]. Experimental Results - The proposed framework was extensively evaluated on four major autonomous driving datasets: Waymo, NuScenes, Argoverse, and PandaSet. The results demonstrate significant improvements in both geometric accuracy and visual realism compared to baseline models [17][18]. Quantitative Evaluation - The method achieved leading results in both geometric and appearance metrics. For instance, the Chamfer Distance (CD) metric on the Waymo dataset improved from 1.378 (baseline) to 0.989, showcasing the model's ability to handle color inconsistencies effectively [18][19]. Qualitative Evaluation - Visual comparisons illustrate the robustness of the proposed method in complex real-world scenarios, effectively reducing visual artifacts and maintaining high-quality outputs [23][24][29]. Generalizability and Plug-and-Play Capability - The method's core modules were integrated into advanced baseline models like ChatSim and StreetGS, resulting in substantial performance enhancements, such as an increase in reconstruction PSNR from 25.74 to 27.90 [20][21]. Conclusion - The multi-scale bilateral grid framework represents a significant advancement in the field of autonomous driving, providing a robust solution to the challenges of dynamic scene reconstruction and photometric inconsistency, thereby enhancing the overall safety and reliability of autonomous systems [10][12][18].