Workflow
山海‧知医大模型
icon
Search documents
云知声医疗大模型获超2000万元合作,拓展区域医保与医疗质量管理
Jin Rong Jie· 2026-01-05 02:49
作者:观察君 声明:市场有风险,投资需谨慎。本文为AI基于第三方数据生成,仅供参考,不构成个人投资建议。 本文源自:市场资讯 云知声智能科技股份有限公司于1月5日通过港交所公告披露,公司近期已与江苏省医疗保障局、石家庄 市卫生健康委员会及郑州市金水区卫生健康委员会达成深度合作,涉及金额累计超过2000万元人民币。 此次合作主要围绕医保垂直大模型、区域医疗质量管理及医院信息智能化建设等多个关键领域展开。 根据公告内容,云知声在本次合作中依托其医疗领域专家级大模型"山海‧知医大模型"的技术优势,并 结合大数据治理等全栈服务能力,以及对医保行业政策法规与业务特点的深度理解,为上述机构提供智 能化解决方案。合作对象包括省级医保管理部门及市、区级卫生健康主管机构,标志着其技术应用场景 从单体医疗机构向区域化、体系化的公共服务管理领域延伸。 ...
医疗大模型拿下苏冀豫三地政府监管机构合作,云知声(9678.HK)开辟区域医疗发展新路径
Ge Long Hui· 2026-01-05 01:45
根据公告内容,公司凭借"山海‧知医大模型"的领先技术优势,大数据治理等全栈服务能力,以及对医 保行业政策法规、业务特点的深刻理解,与江苏省医保局、石家庄市卫建委和郑州市金水区卫健委达成 深度合作,总金额超2000万元,合作领域覆盖医保垂直大模型、区域医疗质量管理、医院信息智能化建 设等。 上述合作事件不仅是公司技术的实战验证,更折射出医疗AI行业从技术研发到商业化落地的路径探 索。 此次与三地政府监管机构深度合作,标志着云知声正式突破单体医院合作模式,迈入区域整体服务的新 阶段。这契合了当前国家政策导向,有效助力化解传统医疗合作中的数据壁垒、标准不一等痛点,推进 实现医疗服务与数据的相互联通,从而提升医疗体系整体效率和质量。 据了解,云知声近期推出"山海‧知医大模型"5.0版本,以"医学文本大模型+医学多模态大模型"双核心为 基座,实现全栈能力融合、高阶推理进化等四大核心突破。在上海人工智能研究院MedBench4.0权威评 测中,斩获医疗智能体、医疗大语言模型等三项冠军,医疗智能体单项得分94.6分,大幅领先行业同类 产品。 从行业价值来看,此次深度合作具备示范效应,获政府监管机构的认可意味着云知声的解决方 ...
云知声凭借“山海‧知医大模型”赋能 拿下超2000万区域医疗合作大单
Xin Lang Cai Jing· 2026-01-05 00:17
Core Viewpoint - The company has successfully partnered with various health authorities in China, leveraging its advanced medical model technology and comprehensive service capabilities to enhance the healthcare sector's digital transformation, with total cooperation amount exceeding RMB 20 million [1][2]. Group 1: Company Achievements - The company has established deep collaborations with Jiangsu Provincial Medical Insurance Bureau, Shijiazhuang Health Commission, and Zhengzhou Jinshui District Health Commission in areas such as medical insurance vertical models and regional healthcare quality management [1]. - The partnerships signify the company's technical strength and service capabilities in the medical digitalization field, transitioning from single hospital collaborations to regional comprehensive services [1]. Group 2: Industry Impact - The company addresses traditional management inefficiencies and weak collaboration in the healthcare system, enhancing medical quality and safety control effectiveness through technological empowerment [2]. - The company aims to align with national strategies, focusing on technological innovation to deepen its involvement in the healthcare intelligence sector and improve regional healthcare intelligent solutions [2].
云知声:与江苏省医保局等达成深度合作,总金额超2000万元
Xin Lang Cai Jing· 2026-01-04 23:11
1月5日早间,云知声在港交所公告,近日,公司凭借医疗领域专家级大模型"山海‧知医大模型"的领先 技术优势,大数据治理等全栈服务能力,以及对医保行业政策法规、业务特点的深刻理解,成功牵手江 苏省医保局、石家庄市卫健委和郑州市金水区卫健委,在医保垂直大模型、区域医疗质量管理与医院信 息智能化建设等领域达成深度合作,总合作金额超过人民币2,000万元。 ...
“山海‧知医大模型”赋能 云知声 (09678.HK) 拿下超 2000 万区域医疗合作大单
Sou Hu Cai Jing· 2026-01-04 22:35
云知声(09678.HK)公布,近日,公司凭借医疗领域专家级大模型"山海‧知医大模型"的领先技术优势,大 数据治理等全栈服务能力,以及对医保行业政策法规、业务特点的深刻理解,成功牵手江苏省医保局、 石家庄市卫健委和郑州市金水区卫健委,在医保垂直大模型、区域医疗质量管理与医院信息智能化建设 等领域达成深度合作,总合作金额超过人民币2000万元。 以上内容为证券之星据公开信息整理,由AI算法生成(网信算备310104345710301240019号),不构成 投资建议。 ...
云知声:近期与江苏省医保局等达成深度合作,总金额超2000万元
Xin Lang Cai Jing· 2026-01-04 22:18
来源:滚动播报 据云知声(09678.HK)公告,近日,公司凭借医疗领域专家级大模型"山海‧知医大模型"的领先技术优势, 大数据治理等全栈服务能力,以及对医保行业政策法规、业务特点的深刻理解,成功牵手江苏省医保 局、石家庄市卫健委和郑州市金水区卫健委,在医保垂直大模型、区域医疗质量管理与医院信息智能化 建设等领域达成深度合作,总合作金额超过人民币2,000万元。 ...
“山海‧知医大模型”赋能 云知声 (09678) 拿下超 2000 万区域医疗合作大单
智通财经网· 2026-01-04 22:14
Core Insights - The company has successfully partnered with Jiangsu Provincial Medical Insurance Bureau, Shijiazhuang Health Commission, and Jinshui District Health Commission in Zhengzhou, achieving a total cooperation amount exceeding RMB 20 million [1] - This collaboration highlights the company's technological strength and service capabilities in the medical digitalization field, transitioning from single hospital cooperation to regional comprehensive services [1] - The company's large model services have evolved from application system output to core model capability output, providing deep technical support for the intelligent and refined upgrade of the medical insurance industry [1] Industry Developments - The company has been addressing traditional management inefficiencies and weak collaboration in the medical system through technological empowerment, enhancing medical quality and safety control effectiveness [2] - In addition to deep cooperation with numerous top-tier hospitals, the company is promoting the integration of large models with clinical operations in district hospitals, accelerating the upgrade of service and management intelligence [2] - The company plans to align with national strategies, using technological innovation as a driving force to deepen its focus on the medical health intelligence sector and continuously expand its business boundaries [2]