Workflow
软体机器人叶片夹持器
icon
Search documents
Science Robotics最新封面!软体机器人给植物"无痛打针",成功率超91%!
机器人大讲堂· 2025-06-13 15:27
Core Viewpoint - Cornell University's scientists have developed a soft robot designed to inject substances into plant leaves, significantly improving the precision and reducing damage compared to traditional methods [1][2][12]. Group 1: Challenges in Plant Injection - Traditional methods for injecting substances into plant leaves are inefficient and often cause significant damage, with injury rates reaching up to 113.8% [6][7]. - The leaf's defense mechanisms, such as small stomatal openings and hydrophobic surfaces, complicate the injection process [6][5]. Group 2: Soft Robot Design - The soft robot features a sandglass-shaped actuator that generates substantial force while minimizing lateral expansion, allowing for effective injection without causing excessive movement [10][11]. - The robot can exert a force of 168.47 ± 5.34 Newtons (approximately equivalent to 17 kg) and can extend 43.55 ± 3.1 mm, showcasing impressive performance in the field of soft actuators [11]. Group 3: Injection Method and Success Rate - The "stamping" injection method allows for a gentle application of liquid into the leaf, achieving an injection success rate of over 91% and significantly reducing damage to the plant [11][12]. - The injection area is 12 times larger than traditional methods, with damage rates as low as 3.6% for sunflower leaves and zero damage for cotton leaves [11][12]. Group 4: Innovative Applications - The AquaDust nanosensor can be injected into leaves to monitor water levels in real-time, providing a non-destructive method for assessing plant hydration [16][17]. - Genetic modification using Agrobacterium can be performed by injecting genes into leaves, allowing for visual tracking of gene expression through color changes [16][17]. Group 5: Future Implications for Agriculture - The research opens new avenues for soft robotics in agriculture, enabling precise care for individual plants and potentially revolutionizing agricultural practices [20][21]. - The cost of the device is approximately $155, which could decrease significantly with mass production, making it accessible for agricultural applications [20].