Workflow
EvaDrive
icon
Search documents
小米智驾正在迎头赶上......
自动驾驶之心· 2025-11-03 00:04
Core Insights - Xiaomi has made significant strides in the autonomous driving sector since the establishment of its automotive division in September 2021, with plans to release the Xiaomi SU7 in March 2024 and the YU7 in June 2025 [2] - The company is actively engaging in advanced research, with a focus on integrating cutting-edge technologies into its autonomous driving solutions, as evidenced by a substantial number of research papers published by its automotive team [2] Research Developments - The AdaThinkDrive framework introduces a dual-mode reasoning mechanism in end-to-end autonomous driving, achieving a PDMS score of 90.3 in NAVSIM benchmark tests, surpassing the best pure vision baseline by 1.7 points [6] - EvaDrive presents an evolutionary adversarial policy optimization framework that successfully addresses trajectory generation and evaluation challenges, achieving optimal performance in both NAVSIM and Bench2Drive benchmarks [9] - MTRDrive enhances visual-language models for motion risk prediction by introducing a memory-tool synergistic reasoning framework, significantly improving generalization capabilities in autonomous driving tasks [13][14] Performance Metrics - The AdaThinkDrive framework has shown a 14% improvement in reasoning efficiency while effectively distinguishing when to apply reasoning in various driving scenarios [6] - EvaDrive achieved a PDMS score of 94.9 in NAVSIM v1, outperforming other methods like DiffusionDrive and DriveSuprim [9] - The DriveMRP-Agent demonstrated a remarkable zero-shot evaluation accuracy of 68.50% on real-world high-risk datasets, significantly improving from a baseline of 29.42% [15] Framework Innovations - ReCogDrive combines cognitive reasoning with reinforcement learning to enhance decision-making in autonomous driving, achieving a PDMS of 90.8 in NAVSIM tests [18] - The AgentThink framework integrates dynamic tool invocation with chain-of-thought reasoning, improving reasoning scores by 53.91% and answer accuracy by 33.54% in benchmark tests [22] - ORION framework effectively aligns semantic reasoning with action generation, achieving a driving score of 77.74 and a success rate of 54.62% in Bench2Drive evaluations [23] Data Generation Techniques - Dream4Drive introduces a 3D perception-guided synthetic data generation framework, significantly enhancing the performance of perception tasks with minimal synthetic sample usage [26] - The Genesis framework achieves joint generation of multi-view driving videos and LiDAR point cloud sequences, enhancing the realism and utility of autonomous driving simulation data [41] - The Uni-Gaussians method unifies camera and LiDAR simulation, demonstrating superior simulation quality in dynamic driving scenarios [42]
GRPO并非最优解?EvaDrive:全新RL算法APO,类人端到端更进一步(新加坡国立)
自动驾驶之心· 2025-08-14 23:33
点击下方 卡片 ,关注" 自动驾驶之心 "公众号 戳我-> 领取 自动驾驶近30个 方向 学习 路线 今天自动驾驶之心为大家分享 新加坡国立、清华和小米等团队最新的工作 - EvaDrive ! 全新强化学习算法APO,开闭环新SOTA。如 果您有相关工作需要分享,请在文末联系我们! 自动驾驶课程学习与 技术交流群加入 ,也欢迎添加小助理微信AIDriver005 >>自动驾驶前沿信息获取 → 自动驾驶之心知识星球 论文作者 | Siwen Jiao等 编辑 | 自动驾驶之心 最近很多端到端方向的工作!今天自动驾驶之心为大家分享新加坡国立、清华和小米等团队最新的工作 - EvaDrive。这篇工作认为: 为了解决这些问题,EvaDrive应运而生 - 一个全新的多目标强化学习框架,通过对抗性优化在轨迹生成和评测之间建立真正的闭环协同进化。EvaDrive将轨迹规划 表述为多轮对抗游戏。在这个游戏中,分层生成器通过结合自回归意图建模以捕捉时间因果关系和基于扩散的优化以提供空间灵活性,持续提出候选路径。然 后,一个可训练的多目标critic对这些proposal进行严格评测,明确保留多样化的偏好结构,而不将其压缩 ...