Workflow
Impromptu VLA
icon
Search documents
即将开课!自动驾驶VLA全栈学习路线图分享~
自动驾驶之心· 2025-10-15 23:33
Core Insights - The focus of academia and industry has shifted towards VLA (Vision-Language Action) in autonomous driving, which provides human-like reasoning capabilities for vehicle decision-making [1][4] - Traditional methods in perception and lane detection have matured, leading to decreased attention in these areas, while VLA is now a critical area for development among major autonomous driving companies [4][6] Summary by Sections Introduction to VLA - VLA is categorized into modular VLA, integrated VLA, and reasoning-enhanced VLA, which are essential for improving the reliability and safety of autonomous driving [1][4] Course Overview - A comprehensive course on autonomous driving VLA has been designed, covering foundational principles to practical applications, including cutting-edge algorithms like CoT, MoE, RAG, and reinforcement learning [6][12] Course Structure - The course consists of six chapters, starting with an introduction to VLA algorithms, followed by foundational algorithms, VLM as an interpreter, modular and integrated VLA, reasoning-enhanced VLA, and a final project [12][20] Chapter Highlights - Chapter 1 provides an overview of VLA algorithms and their development history, along with benchmarks and evaluation metrics [13] - Chapter 2 focuses on the foundational knowledge of Vision, Language, and Action modules, including the deployment of large models [14] - Chapter 3 discusses VLM's role as an interpreter in autonomous driving, covering classic and recent algorithms [15] - Chapter 4 delves into modular and integrated VLA, emphasizing the evolution of language models in planning and control [16] - Chapter 5 explores reasoning-enhanced VLA, introducing new modules for decision-making and action generation [17][19] Learning Outcomes - The course aims to deepen understanding of VLA's current advancements, core algorithms, and applications in projects, benefiting participants in internships and job placements [24]
重磅直播!清华&博世开源SOTA性能纯血VLA:Impromptu-VLA告别双系统~
自动驾驶之心· 2025-07-01 12:58
Core Viewpoint - The article discusses the advancements and challenges in autonomous driving systems, particularly in unstructured environments, and introduces the Impromptu VLA framework developed by Tsinghua AIR and Bosch Research Institute to address data gaps in these scenarios [1]. Group 1: Advancements in Autonomous Driving - Current autonomous driving systems have made significant progress in structured environments like cities and highways, but face challenges in unstructured scenarios such as rural roads and construction zones [1]. - Existing large-scale autonomous driving datasets primarily focus on conventional traffic conditions, leading to a lack of specialized, large-scale, and finely annotated data for complex unstructured environments [1]. Group 2: Impromptu VLA Framework - The Impromptu VLA framework aims to provide an open-weight and open-data driving vision-language-action model, which is a fully end-to-end system that extracts multimodal features directly from driving video segments [1]. - Impromptu VLA generates driving commands in natural language format without the need for manually designed perception modules or intermediate representations [1]. - In the NeuroNCAP closed-loop safety evaluation system, Impromptu VLA demonstrates strong decision robustness and generalization capabilities, significantly outperforming the latest BridgeAD system proposed at CVPR 2025 (2.15 vs. 1.60) [1].
自动驾驶端到端VLA落地,算法如何设计?
自动驾驶之心· 2025-06-22 14:09
Core Insights - The article discusses the rapid advancements in end-to-end autonomous driving, particularly focusing on Vision-Language-Action (VLA) models and their applications in the industry [2][3]. Group 1: VLA Model Developments - The introduction of AutoVLA, a new VLA model that integrates reasoning and action generation for end-to-end autonomous driving, shows promising results in semantic reasoning and trajectory planning [3][4]. - ReCogDrive, another VLA model, addresses performance issues in rare and long-tail scenarios by utilizing a three-stage training framework that combines visual language models with diffusion planners [7][9]. - Impromptu VLA introduces a dataset aimed at improving VLA models' performance in unstructured extreme conditions, demonstrating significant performance improvements in established benchmarks [14][24]. Group 2: Experimental Results - AutoVLA achieved competitive performance metrics in various scenarios, with the best-of-N method reaching a PDMS score of 92.12, indicating its effectiveness in planning and execution [5]. - ReCogDrive set a new state-of-the-art PDMS score of 89.6 on the NAVSIM benchmark, showcasing its robustness and safety in driving trajectories [9][10]. - The OpenDriveVLA model demonstrated superior results in open-loop trajectory planning and driving-related question-answering tasks, outperforming previous methods on the nuScenes dataset [28][32]. Group 3: Industry Trends - The article highlights a trend among major automotive manufacturers, such as Li Auto, Xiaomi, and XPeng, to invest heavily in VLA model research and development, indicating a competitive landscape in autonomous driving technology [2][3]. - The integration of large language models (LLMs) with VLA frameworks is becoming a focal point for enhancing decision-making capabilities in autonomous vehicles, as seen in models like ORION and VLM-RL [33][39].