Workflow
LPLB
icon
Search documents
DeepSeek悄悄开源LPLB:用线性规划解决MoE负载不均
3 6 Ke· 2025-11-20 23:53
Core Insights - DeepSeek has launched a new code repository called LPLB on GitHub, which aims to address the bottlenecks of correctness and throughput in model training [1][4] - The project currently has limited visibility, with fewer than 200 stars on GitHub, indicating a need for more attention [1] Project Overview - LPLB stands for Linear-Programming-Based Load Balancer, designed to optimize load balancing in machine learning models [3] - The project is still in the early research phase, with performance improvements under evaluation [7] Mechanism of LPLB - LPLB implements dynamic load balancing through three main steps: dynamic reordering of experts, constructing replicas, and solving optimal token allocation for each batch [4] - The mechanism utilizes a built-in linear programming solver and NVIDIA's cuSolverDx and cuBLASDx libraries for efficient linear algebra operations [4][10] Comparison with EPLB - LPLB extends the capabilities of EPLB (Expert Parallel Load Balancer) by focusing on dynamic fluctuations in load, while EPLB primarily addresses static imbalances [8] Key Features - LPLB introduces redundant experts and edge capacity definitions to facilitate token redistribution and minimize load imbalance among experts [9] - The communication optimization leverages NVLINK and NVSHMEM to reduce overhead compared to traditional methods [10] Limitations - Current limitations include ignoring nonlinear computation costs and potential delays in solving optimization problems, particularly for small batch sizes [11][12] - In extreme load imbalance scenarios, LPLB may not perform as well as EPLB due to its allocation strategy [12] Typical Topologies - LPLB allows for various topological configurations, such as Cube, Hypercube, and Torus, to define the distribution of expert replicas [13] Conclusion - The LPLB library aims to solve the "bottleneck effect" in large model training, where the training speed is limited by the slowest GPU [14] - It innovatively employs linear programming for real-time optimal allocation and utilizes NVSHMEM technology to overcome communication bottlenecks, making it a valuable resource for developers working on MoE architecture training acceleration [14]
DeepSeek悄悄开源LPLB:用线性规划解决MoE负载不均
机器之心· 2025-11-20 15:13
Core Insights - DeepSeek has launched a new code repository called LPLB (Linear-Programming-Based Load Balancer) on GitHub, which aims to optimize the workload distribution in Mixture of Experts (MoE) models [2][5]. - The project is currently in the early research stage, and its performance improvements are still under evaluation [8][15]. Project Overview - LPLB is designed to address dynamic load imbalance issues during MoE training by utilizing linear programming algorithms [5][9]. - The load balancing process involves three main steps: dynamic reordering of experts based on workload statistics, constructing replicas of experts, and solving for optimal token distribution for each batch of data [5][6]. Technical Mechanism - The expert reordering process is assisted by EPLB (Expert Parallel Load Balancer), and real-time workload statistics can be collected from various sources [6][11]. - LPLB employs a lightweight solver that uses NVIDIA's cuSolverDx and cuBLASDx libraries for efficient linear algebra operations, ensuring minimal resource consumption during the optimization process [6][11]. Limitations - LPLB currently focuses on dynamic fluctuations in workload, while EPLB addresses static imbalances [11][12]. - The system has some limitations, including ignoring nonlinear computation costs and potential delays in solving optimization problems, which may affect performance under certain conditions [11][12]. Application and Value - The LPLB library aims to solve the "bottleneck effect" in large model training, where the training speed is often limited by the slowest GPU [15]. - It introduces linear programming as a mathematical tool for real-time optimal allocation and leverages NVSHMEM technology to overcome communication bottlenecks, making it a valuable reference for developers researching MoE architecture training acceleration [15].