Workflow
Neural Radiance Fields (NeRF)
icon
Search documents
Feed-Forward 3D综述:三维视觉如何「一步到位」
机器之心· 2025-11-06 08:58
Core Insights - The article discusses advancements in the field of 3D vision, particularly focusing on the transition from traditional methods to Feed-Forward 3D approaches, which enhance efficiency and generalization capabilities [2][4]. Summary by Sections Overview of Feed-Forward 3D - The article highlights the evolution of 3D reconstruction techniques, from Structure-from-Motion (SfM) to Neural Radiance Fields (NeRF) and 3D Gaussian Splatting (3DGS), emphasizing the shift towards Feed-Forward 3D methods that eliminate the need for per-scene optimization [2][6]. Key Technological Branches - Five main architectural categories of Feed-Forward 3D methods are identified, each contributing significantly to the field's progress [6][7]. - Neural Radiance Fields (NeRF) introduced a differentiable framework for volume rendering but faced efficiency issues due to scene-specific optimization. The emergence of conditional NeRF has led to various branches focusing on direct prediction of radiance fields [7][9]. - PointMap Models, led by DUSt3R, predict pixel-aligned 3D point clouds directly within a Transformer framework, enhancing efficiency and memory capabilities [9][10]. - 3D Gaussian Splatting (3DGS) represents scenes as Gaussian point clouds, balancing rendering quality and speed. Recent advancements allow for direct output of Gaussian parameters [10][12]. - Mesh, Occupancy, and SDF Models integrate traditional geometric modeling with modern techniques, enabling high-precision surface modeling [14][19]. Applications and Benchmarking - The paper summarizes the application of Feed-Forward models across various tasks, including camera pose estimation, point map estimation, and single-image view synthesis, providing a comprehensive benchmark of over 30 common 3D datasets [16][18][22]. - Evaluation metrics such as PSNR, SSIM, and Chamfer Distance are established to facilitate model comparison and performance assessment [18][23]. Future Challenges and Trends - The article identifies four major open questions for future research, including the integration of Diffusion Transformers, scalable 4D memory mechanisms, and the construction of multimodal large-scale datasets [27][28]. - Challenges such as the predominance of RGB-only data, the need for improved reconstruction accuracy, and difficulties in free-viewpoint rendering are highlighted [29].
Feed-Forward 3D综述:3D视觉进入“一步到位”时代
自动驾驶之心· 2025-10-31 16:03
Core Insights - The article discusses the evolution of 3D vision technologies, highlighting the transition from traditional methods like Structure-from-Motion (SfM) to advanced techniques such as Neural Radiance Fields (NeRF) and 3D Gaussian Splatting (3DGS), emphasizing the emergence of Feed-Forward 3D as a new paradigm in the AI-driven era [2][6]. Summary by Categories 1. Technological Evolution - The article outlines the historical progression in 3D vision, noting that previous methods often required per-scene optimization, which was slow and lacked generalization capabilities [2][6]. - Feed-Forward 3D is introduced as a new paradigm that aims to overcome these limitations, enabling faster and more generalized 3D understanding [2]. 2. Classification of Feed-Forward 3D Methods - The article categorizes Feed-Forward 3D methods into five main architectures, each contributing to significant advancements in the field: 1. **NeRF-based Models**: These models utilize a differentiable framework for volume rendering but face efficiency issues due to scene-specific optimization. Conditional NeRF approaches have emerged to allow direct prediction of radiance fields [8]. 2. **PointMap Models**: Led by DUSt3R, these models predict pixel-aligned 3D point clouds directly within a Transformer framework, eliminating the need for camera pose input [10]. 3. **3D Gaussian Splatting (3DGS)**: This innovative representation uses Gaussian point clouds to balance rendering quality and speed, with advancements allowing direct output of Gaussian parameters [11][13]. 4. **Mesh / Occupancy / SDF Models**: These methods combine traditional geometric modeling with modern techniques like Transformers and Diffusion models [14]. 5. **3D-Free Models**: These models learn mappings from multi-view inputs to new perspectives without relying on explicit 3D representations [15]. 3. Applications and Tasks - The article highlights diverse applications of Feed-Forward models, including: - Pose-Free Reconstruction & View Synthesis - Dynamic 4D Reconstruction & Video Diffusion - SLAM and visual localization - 3D-aware image and video generation - Digital human modeling - Robotic manipulation and world modeling [19]. 4. Benchmarking and Evaluation Metrics - The article mentions the inclusion of over 30 commonly used 3D datasets, covering various types of scenes and modalities, and summarizes standard evaluation metrics such as PSNR, SSIM, and Chamfer Distance for future model comparisons [20][21]. 5. Future Challenges and Trends - The article identifies four major open questions for future research, including the need for multi-modal data, improvements in reconstruction accuracy, challenges in free-viewpoint rendering, and the limitations of long-context reasoning in processing extensive frame sequences [25][26].
聊聊自动驾驶闭环仿真和3DGS!
自动驾驶之心· 2025-07-22 12:46
Core Viewpoint - The article discusses the development and implementation of the Street Gaussians algorithm, which aims to efficiently model dynamic street scenes for autonomous driving simulations, addressing previous limitations in training and rendering speeds [2][3]. Group 1: Background and Challenges - Previous methods faced challenges such as slow training and rendering speeds, as well as inaccuracies in vehicle pose tracking [3]. - The Street Gaussians algorithm represents dynamic urban street scenes as a combination of point-based backgrounds and foreground objects, utilizing optimized vehicle tracking poses [3][4]. Group 2: Technical Implementation - The background model is represented as a set of points in world coordinates, each assigned a 3D Gaussian to depict geometric shape and color, with parameters including covariance matrices and position vectors [8]. - The object model for moving vehicles includes a set of optimizable tracking poses and point clouds, with similar Gaussian attributes to the background model but defined in local coordinates [11]. Group 3: Innovations in Appearance Modeling - The article introduces a 4D spherical harmonic model to encode temporal information into the appearance of moving vehicles, reducing storage costs compared to traditional methods [12]. - The effectiveness of the 4D spherical harmonic model is demonstrated, showing significant improvements in rendering results and reducing artifacts [16]. Group 4: Initialization Techniques - Street Gaussians utilizes aggregated LiDAR point clouds for initialization, addressing the limitations of traditional SfM point clouds in urban environments [17]. Group 5: Course and Learning Opportunities - The article promotes a specialized course on 3D Gaussian Splatting (3DGS), covering various subfields and practical applications in autonomous driving, aimed at enhancing understanding and implementation skills [26][30].
李飞飞的世界模型,大厂在反向操作?
Hu Xiu· 2025-06-06 06:26
Group 1 - The core idea of the article revolves around Fei-Fei Li's new company, World Labs, which aims to develop the next generation of AI systems with "spatial intelligence" and world modeling capabilities [2][5][96] - World Labs has raised approximately $230 million in two funding rounds within three months, achieving a valuation of over $1 billion, thus becoming a new unicorn in the AI sector [3][4] - The company has attracted significant investment from major players in the tech and venture capital sectors, including a16z, Radical Ventures, NEA, Nvidia NVentures, AMD Ventures, and Intel Capital [4][5] Group 2 - Fei-Fei Li emphasizes that AI is transitioning from language models to world modeling, indicating a shift towards a more advanced stage of AI that can truly "see," "understand," and "reconstruct" the three-dimensional world [6][9][23] - The concept of a "world model" is described as AI's ability to understand the three-dimensional structure of reality, integrating visual, spatial, and motion information to simulate a near-real world [15][18][22] - Li argues that language models, while important, are limited as they compress information and fail to capture the full complexity of the real world, highlighting the necessity of spatial modeling for achieving true intelligence [14][23] Group 3 - Key technologies being explored for building world models include the ability to reconstruct three-dimensional environments from two-dimensional images, utilizing techniques like Neural Radiance Fields (NeRF) and Gaussian Splatting [28][32][48] - The article discusses the importance of multi-view data fusion, where AI must observe objects from various angles to form a complete understanding of their shape, position, and movement [40][41] - Li mentions that to enable AI to predict changes in the world, it must incorporate physical simulation and dynamic modeling, which presents significant challenges [45][46][48] Group 4 - The applications of world modeling technology are already being realized across various industries, such as gaming, architecture, robotics, and digital twins, where AI can generate realistic three-dimensional environments from minimal input [50][51][56] - Li highlights the potential of AI in the creative industries, where it can assist artists and designers by enhancing their spatial understanding and imagination [58][60] - The article notes that while the direction of world modeling is promising, challenges remain, including data availability, computational power, and the need for AI to generalize across different environments [61][66][67] Group 5 - Li emphasizes the importance of a multidisciplinary team at World Labs, combining expertise from various fields to tackle the complex challenges of developing world models [72][74] - The article discusses the evolving nature of AI research, moving from individual contributions to collaborative efforts that integrate diverse perspectives [77][78] - Li also addresses the societal implications of AI, advocating for a broader understanding of its impact on education, law, and ethics, emphasizing the need for responsible AI development [81][85][86] Group 6 - Li envisions a future where AI not only sees and reconstructs the world but also participates in it, serving as an intelligent extension of human capabilities [89][90][92] - The article suggests that the development of world models is a foundational step towards achieving Artificial General Intelligence (AGI), which requires spatial perception, dynamic reasoning, and interactive capabilities [94][96] - The potential for AI to transform various sectors, including healthcare and education, is highlighted, indicating a significant shift in how technology can enhance human understanding and interaction with the world [92][93][98]