Workflow
Orbis
icon
Search documents
自动驾驶论文速递 | 世界模型、端到端、VLM/VLA、强化学习等~
自动驾驶之心· 2025-07-21 04:14
Core Insights - The article discusses advancements in autonomous driving technology, particularly focusing on the Orbis model developed by Freiburg University, which significantly improves long-horizon prediction in driving world models [1][2]. Group 1: Orbis Model Contributions - The Orbis model addresses shortcomings in contemporary driving world models regarding long-horizon generation, particularly in complex maneuvers like turns, and introduces a trajectory distribution-based evaluation metric to quantify these issues [2]. - It employs a hybrid discrete-continuous tokenizer that allows for fair comparisons between discrete and continuous prediction methods, demonstrating that continuous modeling (based on flow matching) outperforms discrete modeling (based on masked generation) in long-horizon predictions [2]. - The model achieves state-of-the-art (SOTA) performance with only 469 million parameters and 280 hours of monocular video data, excelling in complex driving scenarios such as turns and urban traffic [2]. Group 2: Experimental Results - The Orbis model achieved a Fréchet Video Distance (FVD) of 132.25 on the nuPlan dataset for 6-second rollouts, significantly lower than other models like Cosmos (291.80) and Vista (323.37), indicating superior performance in trajectory prediction [6][7]. - In turn scenarios, Orbis also outperformed other models, achieving a FVD of 231.88 compared to 316.99 for Cosmos and 413.61 for Vista, showcasing its effectiveness in challenging driving conditions [6][7]. Group 3: LaViPlan Framework - The LaViPlan framework, developed by ETRI, utilizes reinforcement learning with verifiable rewards to address the misalignment between visual, language, and action components in autonomous driving, achieving a 19.91% reduction in Average Displacement Error (ADE) for easy scenarios and 14.67% for hard scenarios on the ROADWork dataset [12][14]. - It emphasizes the transition from linguistic fidelity to functional accuracy in trajectory outputs, revealing a trade-off between semantic similarity and task-specific reasoning [14]. Group 4: World Model-Based Scene Generation - The University of Macau introduced a world model-driven scene generation framework that enhances dynamic graph convolution networks, achieving an 83.2% Average Precision (AP) and a 3.99 seconds mean Time to Anticipate (mTTA) on the DAD dataset, marking significant improvements [23][24]. - This framework combines scene generation with adaptive temporal reasoning to create high-resolution driving scenarios, addressing data scarcity and modeling limitations [24]. Group 5: ReAL-AD Framework - The ReAL-AD framework proposed by Shanghai University of Science and Technology and the Chinese University of Hong Kong integrates a three-layer human cognitive decision-making model into end-to-end autonomous driving, improving planning accuracy by 33% and reducing collision rates by 32% [33][34]. - It features three core modules that enhance situational awareness and structured reasoning, leading to significant improvements in trajectory planning accuracy and safety [34].