RuscaRL
Search documents
理想基座模型负责人近期很满意的工作: RuscaRL
理想TOP2· 2025-10-03 09:55
Core Viewpoint - The article discusses the importance of reinforcement learning (RL) in enhancing the intelligence of large models, emphasizing the need for effective interaction between models and their environments to obtain high-quality feedback [1][2]. Summary by Sections Section 1: Importance of Reinforcement Learning - The article highlights that RL is crucial for the advancement of large model intelligence, with a focus on how to enable models to interact with broader environments to achieve capability generalization [1][8]. - It mentions various RL techniques such as RLHF (Reinforcement Learning from Human Feedback), RLAIF (AI Feedback Reinforcement Learning), and RLVR (Verifiable Reward Reinforcement Learning) as key areas of exploration [1][8]. Section 2: RuscaRL Framework - The RuscaRL framework is introduced as a solution to the exploration bottleneck in RL, utilizing educational psychology's scaffolding theory to enhance the reasoning capabilities of large language models (LLMs) [12][13]. - The framework employs explicit scaffolding and verifiable rewards to guide model training and improve response quality [13][15]. Section 3: Mechanisms of RuscaRL - **Explicit Scaffolding**: This mechanism provides structured guidance through rubrics, helping models generate diverse and high-quality responses while gradually reducing external support as the model's capabilities improve [14]. - **Verifiable Rewards**: RuscaRL designs rewards based on rubrics, allowing for stable and reliable feedback during training, which enhances exploration diversity and ensures knowledge consistency across tasks [15][16]. Section 4: Future Implications - The article suggests that both MindGPT and MindVLA, which target digital and physical worlds respectively, could benefit from the advancements made through RuscaRL, indicating a promising future for self-evolving models [9][10]. - It emphasizes that the current challenges in RL are not just algorithmic but also involve systemic integration of algorithms and infrastructure, highlighting the need for innovative approaches in building capabilities [9].