Workflow
数据要素市场
icon
Search documents
“从经验判断到科学计算,数据产品定价不再拍脑袋”(奋进“十五五”·一线见闻)
Ren Min Ri Bao· 2026-01-09 00:17
健全数据要素基础制度,建设开放共享安全的全国一体化数据市场,深化数据资源开发利用。 ——摘自"十五五"规划建议 走进位于贵州的贵阳大数据交易所(以下简称"贵阳数交所"),数据不再是看不见摸不着的信息流,而 正加速成为可交易、可增值的核心资产。在贵阳数交所供需对接专区,经工作人员撮合,不到半小时, 供需双方就达成一致。线下磋商、线上交易,这种新模式打通了数据要素流通的"最后一公里"。 在这里尝试数据交易后,来自广东的张雪松嗅到新商机:做过买方,以后还有可能做卖方,创造更多经 济价值。 张雪松是广东深圳白鹿云数据科技有限公司董事长,公司从事边缘计算、智能硬件开发,以及智慧城 市、智慧校园的建设、运营与维护。 "公司设备运行会形成日志,每小时就有上亿条数据。对这些日志进行筛选和分析,可以更好调整优化 设备,还能预警潜在故障。"张雪松说,但过去,这些筛选分析的过程,效率低、成本高。 有没有专门处理这类数据的公司?能不能购买数据服务?张雪松拿不准,也不知道该问谁,有想法没办 法。 "有个客户是贵州人,闲聊时提到贵阳数交所。"抱着试一试的想法,张雪松与贵阳数交所取得联系。 作为全国首家大数据交易所,贵阳数交所逐步建立起包 ...
广东企业赴贵州寻求数据服务—— “从经验判断到科学计算,数据产品定价不再拍脑袋”(奋进“十五五”·一线见闻)
Ren Min Ri Bao· 2026-01-08 23:01
健全数据要素基础制度,建设开放共享安全的全国一体化数据市场,深化数据资源开发利用。 ——摘自"十五五"规划建议 走进位于贵州的贵阳大数据交易所(以下简称"贵阳数交所"),数据不再是看不见摸不着的信息流,而 正加速成为可交易、可增值的核心资产。在贵阳数交所供需对接专区,经工作人员撮合,不到半小时, 供需双方就达成一致。线下磋商、线上交易,这种新模式打通了数据要素流通的"最后一公里"。 在这里尝试数据交易后,来自广东的张雪松嗅到新商机:做过买方,以后还有可能做卖方,创造更多经 济价值。 张雪松是广东深圳白鹿云数据科技有限公司董事长,公司从事边缘计算、智能硬件开发,以及智慧城 市、智慧校园的建设、运营与维护。 "公司设备运行会形成日志,每小时就有上亿条数据。对这些日志进行筛选和分析,可以更好调整优化 设备,还能预警潜在故障。"张雪松说,但过去,这些筛选分析的过程,效率低、成本高。 在贵阳数交所,张雪松的公司发布了采购数据服务的需求,经平台匹配,很快就找到一家公司的"数据 分析综合服务"产品。 "多年探索培育,现在进驻的数据商有上千家,产品超过2400个,一般都能实现供需高效匹配。"贵阳数 交所市场部行业总监韩坤洁说 ...
周鸿祎建言“数据安全治理”,提案入选全国政协好提案
Xin Lang Cai Jing· 2026-01-08 07:16
新浪科技讯 1月8日下午消息,近日,全国政协公布了《关于加快推动我国标准制度型开放的提案》等 100件好提案名单,全国政协委员、360集团创始人周鸿祎提出的《构建数据流通安全基础设施平台,护 航数字中国高质量发展》提案成功入选。该提案聚焦数据流通安全核心痛点,提出系统性解决方案,为 推动数据要素合规高效流通、助力新质生产力发展提供了重要参考。 面对数据流通规模扩大带来的复杂化、全局化风险,周鸿祎在提案中指出,当前数据安全治理正面 临"三大短板": 一是市场主体多采用孤立防护模式,安全数据沉淀为"信息孤岛",全局态势感知薄 弱;二是各地安全建设与运营标准不统一,重复投入造成资源浪费;三是缺乏跨行业跨地域联动机制, 难以应对APT攻击等复合型威胁及协同难题。这些问题已成为制约数据价值释放、威胁数字经济生态的 关键瓶颈。 针对上述痛点,周鸿祎在提案中提出了三方面建议:一是构建数据流通安全基础设施平台,打破"信息 孤岛",建立全程全链路安全监测机制,形成立体化防护体系;二是建立统一安全标准,规范认证访 问、数据脱敏等环节,确保流通全程受控;三是打造多主体联动运营体系,整合监管单位、数据供需方 等资源,实现全生命周期动 ...
金融科技板块尾盘拉升,软件ETF指数(560360)涨超2%冲击8连涨
Xin Lang Cai Jing· 2026-01-06 07:11
Group 1 - The financial technology sector experienced a significant rally, with the China Software Service Index rising by 2.42% and individual stocks like Tonghuashun and Wealth Trend increasing by 9.60% and 9.53% respectively [1] - The People's Bank of China announced that starting January 1, 2026, digital yuan wallet balances will earn interest, making China the first economy to offer interest on central bank digital currency [1] - The National Bureau of Statistics released a draft opinion aimed at enhancing data circulation service capabilities by the end of 2029, which is expected to stimulate the data factor market and improve data utilization across society [1] Group 2 - The domestic information technology innovation (信创) industry is rapidly developing under dual policy and market drivers, with a strategic layout covering key sectors such as government, finance, energy, and transportation [2] - The market for information security is projected to grow at a compound annual growth rate of 35%, potentially reaching 16.6 billion yuan by 2027, with initial applications in boundary security, endpoint security, and cloud security [2] - As of December 31, 2025, the top ten weighted stocks in the China Software Service Index include Keda Xunfei, Kingsoft Office, and Tonghuashun, collectively accounting for 60.89% of the index [2]
我国数据要素市场的发展历程、现实困境与推进策略
Xin Lang Cai Jing· 2025-12-29 20:21
【论点摘编】 陈梦根、赵怡然、段宜芃帆在《改革》2025年第10期撰文指出,在数字经济蓬勃发展的背景下,数据已 成为关键生产要素,建立健全数据要素市场对于推动经济高质量发展具有重要的理论价值和现实意义。 我国数据要素市场快速发展,数据交易场所建设不断推进,要素市场规模稳步扩大,法律制度日益健 全。然而,数据要素的价值潜力尚未充分释放,当前数据要素市场建设过程中仍面临诸多挑战,制度层 面交易规则和监管机制亟须完善,市场层面运行效率有待提升,支撑层面基础设施和技术保障存在短 板。破解数据要素市场化困境,亟须多维度协同推进、精准施策,推动市场实现规范、有序、可持续发 展。在制度保障方面,应完善规则体系,筑牢治理根基;在市场运行方面,应健全运行机制,提升配置 效率;在技术赋能方面,应强化科技支撑,释放数据潜能。 (来源:光明日报) 转自:光明日报 ...
《宁波市数据应用促进条例》表决通过
Xin Lang Cai Jing· 2025-12-27 00:11
权益保护是促进数据流动、实现价值的基础和前提。条例设专章对权益保护作出规定,明确数据处理者 权益,并对处理生成的衍生数据、数据衍生产品权益等作了规定。 深化产业培育是条例的一大特色亮点。条例对制定培育政策、建立企业培育库、分类培育企业、搭建生 态孵化平台等作了规定,对推动各行业数据多维度融合应用作了规定,对支持构建高质量数据集和语料 库,推进人工智能大模型开发和训练作了规定。 《宁波市数据应用促进条例》对培育数据要素市场、促进数据合法高效应用、推动数字经济发展、建设 数字宁波有着重要意义。市人大常委会法工委相关负责人表示:"条例具有强化数据应用、突出流通 性,深化产业培育、突出特色性,完善制度保障、突出创新性三大特色。条例制定不仅有助于总结我市 在数据应用领域的改革创新经验,也有利于加快构建数据应用基础制度体系。" 条例以"供得出、流得动、用得好"为目标,以促进数据应用作为立法主线,贯穿数据共享开放、流通交 易、开发利用等全生命周期应用管理体系。条例第十七条明确,公共数据应当以共享为原则、不共享为 例外。市和区(县、市)数据主管部门应当根据国家、省有关规定,对公共数据实行统一目录管理,组织 编制本行政区域公共 ...
“十五五”数据资源开发利用系列解读五 多向发力 推动付费数据市场建设
Ren Min Wang· 2025-12-24 14:59
高质量数据付费市场的积极发展态势 市场发展过程中存在的结构性矛盾虽影响了高质量数据的付费意愿,但随着国家近年来在顶层设计、制 度供给、技术演进及模式创新等方面的持续发力,数据付费市场已呈现出积极的发展态势。 在技术层面,AI大模型技术与应用形态的演进正加速推动社会智能化转型,全域智能化赋能正在逐步 实现。 "十五五"规划建议提出,健全数据要素基础制度,建设开放共享安全的全国一体化数据市场,深化数据 资源开发利用。国家数据局多次发声,呼吁全社会加大对数据领域的投入,着力培育"为数据付费买 单"的市场意识。这一倡导,不仅是对数据要素市场化配置的顶层指引,更是打通数据价值转化堵点、 构建健全数据要素市场的关键一步。多位专家将深入解读数据资源开发利用的市场培育逻辑与实践路 径。 当前,AI大模型行业正经历爆发式增长。从技术突破到应用拓展,从资本涌入到人才集聚,在全球范 围内催生了多样化的商业模式与应用场景。其中,高质量数据集作为数智创新的关键资源,已成为AI 大模型发展以及各类智能体应用的生命线,而一套完善的高质量数据付费机制,正是高质量数据集流通 和价值释放的关键。 高质量数据付费市场现状剖析 随着数据要素市场化配 ...
论数据资产证券化:实践、风险与展望
Core Insights - The rapid development of technology has made data a new production factor driving economic growth, playing a crucial role in optimizing decision-making, enhancing efficiency, and fostering new business models [1] - The exploration of data asset securitization is significant for unlocking the value of data elements, broadening corporate financing channels, and deepening the reform of the data element market [1] Group 1: Definition of Data Asset Securitization - Data assets are defined as data resources that organizations legally own or control, which can be measured and bring economic or social value [2] - Data asset securitization involves financing through the issuance of asset-backed securities, supported by the stable cash flows generated from data assets [3] Group 2: Development Foundations and Practices - There is a solid policy and market foundation for promoting data asset securitization, with a framework established for data ownership rights and various policies addressing data asset management and valuation [5] - The demand for data asset securitization is growing as data-driven companies face funding pressures, providing a solution for converting future revenues into immediate cash [5] - Infrastructure for data trading is developing, with a nationwide network of data trading venues and the application of technologies like privacy computing and blockchain enhancing security and trust [6] Group 3: Domestic Innovation Cases - Various models of data asset securitization are emerging, including indirect credit enhancement through data asset pledges and direct monetization of data [7][8] - These cases illustrate the evolution of data from a supportive role to a core component of financial applications, providing valuable insights for future practices [8] Group 4: Challenges and Risks - Data asset securitization faces challenges related to the improvement of foundational systems, including property rights and regulatory frameworks [9] - Technical bottlenecks exist in areas such as data ownership verification and dynamic valuation, which hinder the scalability of securitization [9] Group 5: Pathways for Steady Development - Continuous improvement of data foundational systems is essential, including accelerating the legislative process for data property rights and promoting unified market standards [10] - Encouraging orderly innovation in the market through coordinated efforts between financial regulators and data management authorities is crucial [10] - Strengthening the collaborative ecosystem among various stakeholders, including data asset evaluation and legal services, will enhance the standardization of professional services [10] Group 6: Conclusion and Outlook - Data asset securitization is a vital innovation connecting data elements with capital markets, with a promising outlook as foundational policies and market practices evolve [11] - The ongoing development of a unified data market will gradually standardize core processes such as ownership verification and valuation, unlocking the potential value of data resources [11]
青岛数据集团赵传启:“运营赋能+服务变现” 以公共数据运营撬动数据要素市场
Core Insights - The article emphasizes the importance of public data development and utilization as a key breakthrough for activating factor value, with Qingdao Data Group positioned as a primary developer of public data [2][3] Group 1: Company Overview - Qingdao Data Group was established in February 2025, evolving from Huatuo Zhiyan Institute, which had two years of experience in public data operations [3] - The company has three core business segments: public data operation, data asset investment, and AI infrastructure development [3] Group 2: Data Operations - The company has integrated social data through a trusted data space and data hosting model, creating nine specialized areas including finance and healthcare, serving over 20 application scenarios for Qingdao municipal departments [4] - Qingdao Data Group has facilitated cross-regional medical services and established a comprehensive data asset management process for administrative units [4] Group 3: Data Services - The company focuses on various scenarios for data value release, including data accounting, equity participation, and financial leverage through securitization and pledging [5] - Qingdao Data Group has attracted over 2,000 companies and 100,000 individuals through its branding initiatives and established a data asset securitization alliance with 26 financial institutions [5] Group 4: Market Impact - Qingdao Data Group has completed data asset registration for 119 non-listed companies, accounting for nearly one-third of the national total [6] - The company has pioneered a standardized approach for data asset registration and valuation, which is now being referenced by over 50 cities [6] Group 5: Internal Collaboration - The company has developed a unique internal collaboration advantage through four platforms, enhancing the efficiency of data development and utilization [7] - Qingdao Data Group is focusing on empowering industries through high-quality data sets for AI applications in marine and health industries [7]
深圳高技术产业创新中心卢春江:跨界融合与场景创新推动数据业务落地
12月10日,由中国经营报社主办的"2025中国数据要素高质量发展论坛"在北京举行。 深圳国家高技术产业创新中心大数据平台与信息部部长、中国科学技术情报学会创新情报专业委员会主 任委员卢春江在论坛圆桌对话环节表示,在企业转型的场景化服务过程中,新业务不断迸发,传统智库 运营模式如做调查、访谈的形式在业务中的占比逐渐下降,但是数据化形式的新兴业务,以及以模型化 形式向客户交付,反而可能会成为第二增长曲线。 卢春江介绍,深圳国家高技术产业创新中心是一个科技产业智库,成立于1992年,由国家发改委与深圳 市政府共同设立,目前团队有300人,长期服务于深圳和大湾区政府领域的科技产业决策。智库服务两 类群体,一类是政府部门,一类是金融机构与大型企业的战略部门。 近年来,智库业务进行数字化转型,打造了全国首个创新产业情报领域的高质量数据集HiTech data,开 创"数据驱动、情报赋能"的科技产业决策新范式。数据集有效数据400亿条,日更新量超600万条,整合 了1.1亿个机构、1.4亿个专利、100亿个舆情及3900万个人才数据,融合自然语言处理与机器学习技术, 开发超100个产业分析模型,构建7.8亿个实体、百亿级 ...