语言模型

Search documents
图书编辑要趁早转行吗?
Hu Xiu· 2025-07-10 07:47
如果你陷⼊了⽚刻的沉思,开始想起⾏业⻩⾦时代的传说,那么这篇⽂章的每⼀个字,都是为你⽽写。 因为我们必须承认⼀个令⼈不适的现实:我们所以为的事业,可能正在静悄悄地沦为⼀⻔过⽓⼿艺。甚 ⾄,连"⼿艺"都称不上,它正在变成⼀个历史名词。 我不想⽤"⾏业的冬天"这种陈词滥调来粉饰太平。冬天意味着春天终将到来,那是⼀种循环。⽽我们正 在经历的,不能算循环了,这是⼀场史⽆前例的⽣态更迭,更是⼀场没有硝烟、却⾜以将我们整个⾏业 颠覆的范式⾰命。 是的,⽣成式⼈⼯智能正在以前所未有的⼒量冲击着出版这个古⽼的⾏业。 看不⻅的图书馆与最后⼀批读者 现在还有图书编辑会因为⼀本尚未⾯世的新书⼼潮澎湃吗?不是那种盘算着可能会是爆款的职业性兴 奋,⽽是⼀种纯粹的、源⾃灵魂深处的激动——你确信⾃⼰⼿中捧着的是即将诞⽣于世的伟⼤思想,或 是可精准注⼊社会病灶的时代良⽅。 我估计很少有⼈有了。 让我们从故事的另⼀端讲起——那个我们称之为"读者"的,⽇益模糊的群体。 ⼩红书上搜"写论⽂",会看到⼤量的⽤户在分享论⽂写作的密码,其中提及最多的就是使⽤⼈⼯智能的 ⽅法。⼗⼏年前,我们上学那年,到了⼤四,那真是会冲进图书馆,在书架前翻找⼀天,借回五 ...
马斯克xAI发布Grok 4:训练算力提升100倍,多项测试中领先第二名一倍
Feng Huang Wang· 2025-07-10 06:20
Core Insights - xAI has launched its latest large language model, Grok 4, which shows significant performance improvements over its predecessor, Grok 3, with a 100-fold increase in training computational power [1] - Grok 4 achieved a 25% problem-solving rate in the "Humanities Last Exam" benchmark, while the multi-agent version, Grok 4 Heavy, exceeded 50% [1] - The company is focusing on enhancing multi-modal understanding capabilities and has released an API for Grok 4, supporting a context length of 256K [2] Model Performance - Grok 4 demonstrates superior reasoning capabilities in standardized tests, including GPQA and AIME, and achieved a perfect score in the Live Coding Bench test [2] - The model integrates tool usage directly into its training process, improving reliability in complex task handling [2] Commercialization Efforts - xAI has introduced a subscription service, Super Grok Heavy, allowing users to access both Grok 4 and Grok 4 Heavy [3] - The company plans to develop a dedicated programming model and initiate video generation model training using over 100,000 H200 GPUs in the coming weeks [3] - The release of Grok 4 marks a significant breakthrough in the competitive landscape of large language models, particularly in reasoning and multi-agent collaboration [3]
马斯克发布Grok 4:叫板GPT-5,首席科学家却临阵离职
Feng Huang Wang· 2025-07-10 05:31
Core Viewpoint - Elon Musk officially launched the latest language model from his xAI team, Grok 4, amidst controversies including the resignation of xAI's chief scientist and previous issues with the model generating racist content [1][2] Group 1: Model Features and Capabilities - Grok 4 showcases significant upgrades, including multi-modal capabilities for processing text and images, with potential future support for video processing [2] - The model introduces Grok 4 Code for code writing and debugging, and enhances voice interaction for a more natural conversational experience [2] - Grok 4 will utilize a tool called DeepSearch for real-time internet searches, integrating data from the X platform to provide up-to-date information [2] - A unique feature of Grok 4 is its enhanced understanding of internet culture, slang, and memes, aiming to be a more relatable AI assistant [2] Group 2: Market Position and Challenges - Despite its powerful features, Grok 4 faces a credibility crisis due to previous versions producing biased content, raising concerns about xAI's commitment to product safety and testing [2] - Musk positions xAI as a challenger to what he refers to as "woke" AI models like ChatGPT and Gemini, yet he remains largely silent on the current controversies [2] - In contrast to competitors like OpenAI and Google, which prioritize reliability and safety, xAI opts for a more avant-garde approach with fewer restrictions, which poses risks that remain to be evaluated by the market [3]
ICML 2025 | 给AI装上「智能升级插件」!阿里安全-清华大学D-MoLE让模型在持续学习中动态进化
机器之心· 2025-07-10 04:26
本文第一作者为清华大学计算机系的硕士二年级研究生葛晨笛,研究方向为多模态大语言模型、自动机器学习和图机器学习。主要合作者为来自阿里巴巴集 团安全部的樊珈珮、黄龙涛和薛晖。通讯作者为清华大学的朱文武教授、王鑫副研究员。 近日,阿里巴巴集团安全部 - 交互内容安全团队与清华大学针对持续多模态指令微调的联合研究成果被机器学习顶级会议 ICML 2025 收录。本届 ICML 共收到 12,107 篇投稿,录用率为 26.9% 。 一、 研究背景 多模态大语言模型( Multimodal Large Language Models, MLLMs) 通过结合视觉、语音等模态编码器与文本生成模型,展现出处理多模态数据的强大 能力。然而,在实际应用中,预训练的 MLLM 会随着用户需求和任务类型的变化,不断面临新的适配要求。如果直接针对新任务进行微调,模型往往会出 现灾难性遗忘 ( Catastrophic Forgetting) ,即丢失之前掌握的能力。 因此,如何让 MLLM 持续地适应新任务,同时保留过去的知识,成为一个核心挑战,这一问题被称为「持续多模态指令微调」 ( Continual Multimodal In ...
中金:如何利用大模型实时预测宏观经济指标?
中金点睛· 2025-07-09 23:59
1. 通过拆分为高频宏观数据,提高数据预期更新频率: 基于动态更新的高频宏观数据,对低频宏观数据的预期值进行实时播报的模型,例如GDPNow模 型。这种"一指标一模型"的范式虽然可解释性强、模型底层逻辑稳健,但需投入大量领域知识,无法系统性应用,且拆分后的高频数据噪声也可能导致过 拟合。 2. 结合季节性与外生因素的自回归差分移动平均模型(SARIMAX): 通过时间序列的滞后项构建预测关系,其核心逻辑是利用历史数据的自相关性捕捉 序列的内在规律,并引入季节性参数与外生变量,通过外部信息增强对突发事件以及规律异象的解释力。相较于基于高频数据拆分的复杂模型,自回归方 法具有更强的系统性测试能力。模型适用于对高频、差分后符合平稳特征、外生冲击有限的指标进行实时预测。 3. LLMs解读文本信息实时预测: 借助大语言模型实时解析非结构化文本(宏观新闻、分析师报告等),通过语义关联和逻辑推理生成预测信号。该方法 提炼了市场对突发事件的即时反应与共识预期,较传统模型更快捕捉拐点,且突破了结构化数据的局限,但可能存在一定随机性,且模型效果依赖输入信 息质量。 如何实时预测宏观数据 经济指标需要在月末或季末进行数据收集、校 ...
7月10日电,OpenAI的开放语言模型据悉最快将于下周首次亮相。
news flash· 2025-07-09 16:20
智通财经7月10日电,OpenAI的开放语言模型据悉最快将于下周首次亮相。 ...
据美国科技媒体The Verge:OpenAI的开放语言模型即将问世。
news flash· 2025-07-09 16:17
据美国科技媒体The Verge:OpenAI的开放语言模型即将问世。 ...