Workflow
人工智能+科学
icon
Search documents
之江实验室薛贵荣:当AI开始做科研,我看到了大语言模型的天花板丨GAIR 2025
雷峰网· 2025-12-24 00:22
本次大会为期两天,由GAIR研究院与雷峰网联合主办,高文院士任指导委员会主席,杨强院士与朱晓蕊教 授任大会主席。 作为观测AI技术演进与生态变迁的重要窗口,GAIR大会自2016年创办以来以来,始终与全球AI发展的脉 搏同频共振,见证了技术浪潮从实验室涌向产业深海。 2025年,是大模型从"技术破壁"迈向"价值深 耕"的关键节点,值此之际GAIR如期而至,携手智者触摸AI最前沿脉动,洞见产业深层逻辑 。 大会上,之江实验室科学模型总体组技术总师,天壤智能CEO薛贵荣博士亲临现场,为参会者带来了一场 精彩纷呈的演讲分享。 " 大语言模型受限于「语言的边界」,无法理解高维度、跨模态的 科学数据。 " 作者丨胡清文 编辑丨徐晓飞 12月12日, 第八届GAIR全球人工智能与机器人大会 在深圳正式启幕。 薛贵荣博士指出, 以大语言模型为代表的AI技术虽已在多个学科研究中展现出潜力,但其本质上仍受限 于"语言的边界",难以真正理解高维度、多类型的科学数据,更无法独立完成可验证的科学发现。 基于此,薛贵荣博士系统分析了大语言模型与科学基础模型之间的本质差异,并详细阐述了之江实验室所 研发出的 021科学基础模型在突破语言 ...
用好AI这个科研超级助手
Jing Ji Ri Bao· 2025-10-22 22:09
国务院不久前印发的《关于深入实施"人工智能+"行动的意见》,明确提出加快实施"人工智能+"科学技 术行动。这是党中央准确把握科技发展大势作出的重要战略部署,指引我们在新一轮科研范式变革中抢 占先机。 例如,针对我国用于AI训练的数据质量良莠不齐、依赖国外数据库资源、数据标准不统一等问题,当 务之急是加快构建国家级数据平台和算力网络,促进跨平台、跨学科的优质科学数据资源安全共享与高 效应用。再如,针对多学科交叉人才短缺这一问题,则需要加强相关学科与人工智能交叉领域的复合型 人才培养。 面对新形势新挑战,广大科技工作者应积极拥抱新浪潮,探索使用人工智能手段解决重大科学问题。有 关部门也要瞄准问题症结,强化跨领域、跨部门协同攻关,让人工智能真正成为科学家们的超级助手, 助力提升科研效率和创新潜能。 (文章来源:经济日报) 近年来,人工智能驱动的科学研究在全球持续升温,展现出重塑科技创新的巨大潜力,科学研究正迈 向"人工智能+科学"的新范式。一个颇具代表性的例子就是人工智能模型阿尔法折叠2(AlphaFold2)准 确预测蛋白质结构。由于组成蛋白质多肽链的氨基酸数量极为庞大,根据已知的氨基酸序列预测蛋白质 三维结构, ...
【中国新闻网】开启科研无限可能 中国团队发布“磐石·科学基础大模型”
Zhong Guo Xin Wen Wang· 2025-07-28 03:04
Core Insights - The "Panshi Scientific Foundation Model" was officially launched on July 26, 2025, aiming to provide robust intelligent support for technological innovation across various fields, leveraging AI to reshape scientific research paradigms [4][11] - The model addresses challenges in the current "AI + Science" research landscape, such as data silos and insufficient reasoning capabilities, by promoting a platform-based and systematic transformation [5][11] Group 1: Model Capabilities - The "Panshi Scientific Foundation Model" is trained on specialized scientific knowledge and data, enabling deep understanding of various scientific modalities, including waves, spectra, and fields [4][7] - It features a heterogeneous mixed expert architecture, integrating proprietary models tailored for common scientific data modalities, and has achieved top performance in international datasets across mathematics, physics, chemistry, materials, and biology [7][9] Group 2: Applications and Efficiency - The model has been applied in multiple disciplines, significantly accelerating research processes, such as achieving over 10 times faster efficiency in drug target discovery in life sciences [9][10] - It supports the automation of particle physics research tasks and enhances the efficiency of high-speed train model calculations in fluid environments [9][10] Group 3: Tools and Ecosystem - The "Panshi Literature Compass" assists researchers in literature review and evaluation, processing 170 million scientific documents and reducing research time from days to minutes [8][11] - The "Panshi Tool Scheduling Platform" allows for the autonomous planning and invocation of over 300 scientific computing tools, improving research workflow efficiency [8][11] Group 4: Collaborative Initiatives - The Chinese Academy of Sciences has initiated the "Scientific Foundation Model Ecological Alliance" plan, collaborating with over 40 research institutions, universities, and enterprises to foster a new ecosystem for "AI + Science" [11]