Workflow
大模型幻觉问题
icon
Search documents
医疗影像大模型,还需“闯三关”
3 6 Ke· 2025-05-18 23:14
Core Viewpoint - The integration of AI in medical imaging is advancing rapidly, with large models evolving from mere tools to core drivers of diagnostic ecosystems, enhancing the workflow of radiologists and addressing challenges in pathology diagnostics [1][2]. Group 1: Development of AI in Medical Imaging - Medical imaging AI models have achieved widespread application in the workflow of radiologists, transitioning from auxiliary diagnostic tools to essential components of the diagnostic ecosystem [1]. - The "Shukun Kun Multi-modal Medical Health Large Model" released by Shukun Technology in April signifies this evolution, enhancing the role of AI in diagnostics [1]. Group 2: Challenges and Solutions in Pathology - Pathology models are considered the "crown jewel" of medical models due to their complexity and diversity, with the first clinical-grade pathology model, "Insight," developed by Tuo Che Future, addressing accuracy and efficiency challenges [2]. - The pathology model addresses long-standing challenges in generalization across hospitals, cancer types, and pathology tasks, simplifying processes and improving diagnostic efficiency [3]. Group 3: Enhancing AI Generalization Performance - AI model generalization is crucial for reliability and stability, with key challenges including insufficient data diversity, model limitations, and the long-tail nature of medical data [4][6]. - Strategies to enhance generalization include expanding data sample diversity, optimizing model training, and iterating models in real clinical environments [6][7]. Group 4: Addressing the Hallucination Problem - The hallucination issue in large models is a significant barrier, with RAG (Retrieval-Augmented Generation) technology proposed as a solution to enhance accuracy by integrating external knowledge [8][9]. - A hybrid approach combining generative and discriminative AI is suggested to mitigate risks in critical decision-making scenarios, ensuring reliable outputs [9]. Group 5: Deployment Trends in Healthcare - Local deployment of AI models is becoming the preferred choice for hospitals due to data privacy and compliance advantages, with integrated solutions like one-box systems gaining traction [10][11]. - One-box systems combine the strengths of general and specialized models, addressing diverse medical needs while ensuring data control [10]. Group 6: Future Trends in Medical AI - The performance of medical large models is surpassing traditional small models, with applications expanding from thousands to over ten thousand hospitals [12]. - The future of medical AI is moving towards multi-modal integration and comprehensive diagnostics, akin to a digital "general practitioner" that synthesizes various patient data for holistic treatment recommendations [12][13].