Workflow
芯片光刻
icon
Search documents
芯片光刻取得新突破!
Ke Ji Ri Bao· 2025-10-27 08:31
Core Insights - Recent advancements in photolithography technology have been achieved by a research team led by Professor Peng Hailin from Peking University, utilizing cryo-electron tomography to analyze the microscopic 3D structure and behavior of photoresist molecules in a liquid environment, which aids in developing industrial solutions to significantly reduce photolithography defects [1][2] Group 1: Photolithography Technology - Photolithography is a critical driver for the continuous miniaturization of integrated circuit chip manufacturing processes [1] - The core step of "development" in photolithography involves dissolving the exposed areas of photoresist with a developer solution to accurately transfer circuit patterns onto silicon wafers [1] - The microscopic behavior of photoresist in the developer solution has long been a "black box," limiting process optimization and becoming a key bottleneck for improving yield in advanced processes of 7nm and below [1] Group 2: Research Methodology - The research team introduced cryo-electron tomography into the semiconductor field, successfully synthesizing a high-resolution 3D "panoramic photo" with a resolution better than 5nm, overcoming traditional limitations of in-situ, three-dimensional, and high-resolution observation [1] - This technology provides a powerful tool for analyzing various liquid-phase interfacial reactions at the atomic/molecular scale, which can enhance defect control and yield improvement in critical processes such as photolithography, etching, and wet cleaning in advanced manufacturing [2]
热点回应丨冷冻电镜如何“跨界”助力芯片光刻取得新突破
Ke Ji Ri Bao· 2025-10-27 01:00
光刻技术是推动芯片制程工艺持续微缩的核心驱动力之一。近日,北京大学化学与分子工程学院彭 海琳教授团队及其合作者在《自然-通讯》上披露了他们的新发现。该团队通过冷冻电子断层扫描技 术,首次在原位状态下解析了光刻胶分子在液相环境中的微观三维结构、界面分布与缠结行为,指导开 发出可显著减少光刻缺陷的产业化方案。 该成果经媒体报道后,引起多方关注。冷冻电镜这一常被认为用于生命科学领域的技术,如何进入 芯片制造业并为业界提供指导? 一问:光刻为什么重要? 三问:该发现对产业界意味着什么? 冷冻电镜断层扫描的三维重构带来了一系列新发现。 论文通讯作者之一、北京大学化学与分子工程学院高毅勤教授表示,以往业界认为溶解后的光刻胶 聚合物主要分散在液体内部,可三维图像显示它们大多吸附在气液界面。团队还首次直接观察到光刻胶 聚合物的"凝聚缠结",其依靠较弱的力或者疏水相互作用结合。而且,吸附在气液界面的聚合物更易发 生缠结,形成平均尺寸约30纳米的团聚颗粒,这些"团聚颗粒"正是光刻潜在的缺陷根源。 "我们由此提出了两项简单、高效且与现有半导体产线兼容的解决方案。一是抑制缠结,二是界面 捕获。"彭海琳说,实验表明,两种策略结合,12 ...