规则驱动

Search documents
清华王建强:“聪明车”必是“安全车” “认知驱动”引领自动驾驶迈向安全可控
Zhong Guo Jing Ying Bao· 2025-07-17 08:48
Group 1 - The current development of autonomous driving systems is significantly lagging behind expectations, facing numerous challenges, particularly in achieving safety and advancing from L3 to L4 and L5 levels [1][2] - Traditional "data feeding" methods are insufficient for complex scenarios, necessitating a new paradigm of "self-learning + prior knowledge" to enhance safety and generalization in high-level autonomous driving [1][5] - The focus is shifting towards a human-centered technology approach, emphasizing the construction of cognitive capabilities that surpass human abilities [1][9] Group 2 - Intelligent vehicle safety is a critical national demand, especially in China, where complex road traffic scenarios and frequent accidents pose significant challenges [2][3] - Low-level intelligent vehicles have achieved high market penetration, but there are still many safety challenges to overcome as the industry moves towards higher levels of automation [2][3] - A complete "perception-cognition-decision" technology system is essential for rapid perception, accurate judgment, and efficient response to complex dynamic scenarios [2][3] Group 3 - Current intelligent vehicles struggle with accurate perception, cognition, and safety decision-making in unpredictable and complex situations [3][4] - The rule-driven approach is limited to known structured scenarios, while the data-driven approach suffers from a lack of interpretability and generalization capabilities, making it inadequate for L4+ level autonomous driving [3][4] - Both rule-driven and data-driven methods face critical challenges in adapting to complex environments and ensuring safety [4][5] Group 4 - To address the limitations of existing methods, a cognitive-driven approach is proposed, which combines the interpretability of rule-driven systems with the learning capabilities of data-driven systems [5][6] - This cognitive-driven approach aims to enhance the system's ability to generalize, evolve, and make reliable decisions by understanding the interactions and dynamics of the human-vehicle-road system [5][6] Group 5 - The cognitive-driven architecture encompasses three main layers: perception, cognition, and decision-making, integrating both rule-based and data-driven elements [6][7] - The first layer focuses on environmental perception, the second on risk cognition and prediction, and the third on adaptive safety decision-making [6][7] - This comprehensive approach aims to create a cognitive autonomous driving system capable of handling complex and unknown scenarios effectively [6][7] Group 6 - The future of intelligent vehicles is expected to evolve from rule-driven and data-driven approaches to a cognitive-driven model, enhancing generalization and safety in unknown and long-tail scenarios [7][8] - A "three verticals and three horizontals" technical architecture is proposed to support the systematic evolution of intelligent vehicles, focusing on key vehicle technologies, advanced information technologies, and foundational support technologies [8][9] - The emphasis is on ensuring that "smart cars" are also "safe cars," necessitating a transition to a brain-like cognitive architecture for intelligent vehicle safety [9]