Workflow
视觉模仿学习
icon
Search documents
单条演示即可抓取一切:北大团队突破通用抓取,适配所有灵巧手本体
量子位· 2025-10-29 05:11
Core Insights - The article discusses the challenges of traditional reinforcement learning (RL) in high-dimensional action spaces for robotic grasping tasks and introduces the DemoGrasp framework as a solution [1][2][4]. Group 1: DemoGrasp Framework - DemoGrasp is a simple and efficient learning method for general robotic grasping, initiated from a single successful demonstration trajectory [2][4]. - The framework transforms multi-step Markov Decision Processes (MDP) into a single-step MDP by editing demonstration trajectories, enhancing learning efficiency and performance transfer to real robots [4][7]. Group 2: Learning Process - The learning process involves editing the robot's actions in the demonstration trajectory to adapt to different objects and poses, focusing on wrist and finger adjustments [9][16]. - DemoGrasp utilizes a simulation environment with thousands of parallel worlds to train the policy network, which outputs editing parameters based on observations [10][11]. Group 3: Training Efficiency - The training efficiency is notable, with a single RTX 4090 GPU achieving over 90% success rate in just 24 hours on a compact action space [12]. - The framework can adapt to various robotic hands without adjusting training hyperparameters, achieving an average success rate of 84.6% across 175 objects [20]. Group 4: Performance Metrics - DemoGrasp outperforms existing methods in the DexGraspNet dataset, achieving a visual policy success rate of 92% with minimal generalization gap [17][18]. - In real-world tests, DemoGrasp successfully grasped 110 unseen objects, maintaining over 90% success rates for regular objects and 70% for challenging flat and small objects [21][22]. Group 5: Future Directions - The framework aims to support more complex tasks such as functional grasping and tool usage, with potential for real-time adjustments and error recovery in future research [25][26]. - DemoGrasp can integrate with multimodal large models for autonomous grasping in open environments [27].
仅需 1 次演示,机器人就能像人手一样抓遍万物?DemoGrasp 刷新灵巧抓取天花板
具身智能之心· 2025-10-04 13:35
点击下方 卡片 ,关注" 具身智能 之心 "公众号 编辑丨具身智能之心 本文只做学术分享,如有侵权,联系删文 >> 点击进入→ 具身智能之心 技术交流群 更多干货,欢迎加入国内首个具身智能全栈学习社区 : 具身智能之心知识星球 (戳我) , 这里包含所有你想要的。 让机器人用多根手指灵活抓取物体,听起来简单,却是机器人操作领域困扰多年的 "老大难" 问题。想象一下:从拿起手机、握住水杯,到夹起薄如纸 片的便签、捏起直径不足 3 厘米的纽扣。这些人类习以为常的动作,对机器人而言,每一步都是高难度挑战。 传统强化学习方法为了让机器人掌握抓取技能,往往要在高自由度(DoFs)的动作空间里反复试错,不仅需要设计复杂的奖励函数和训练课程,还常 常 "学了抓杯子,就忘了抓卡片",泛化能力极差。更棘手的是,仿真环境中训练出的 "抓取高手",一到真实场景就 "水土不服"——没有了精确的物理 参数和物体接触点等 "特权信息",仅靠 RGB 或深度相机的视觉输入,再加上光照、背景变化的干扰,成功率断崖式下跌。 而那些小巧、纤薄的物体,更是传统方法的 "噩梦":硬币容易从指缝滑落,卡片难以找到受力点,想要无碰撞地抓起它们,仿佛让机 ...