DemoGrasp
Search documents
单条演示即可抓取一切:北大团队突破通用抓取,适配所有灵巧手本体
3 6 Ke· 2025-10-29 08:55
Core Insights - The article discusses the introduction of the DemoGrasp framework, a novel approach to robotic grasping that addresses challenges in traditional reinforcement learning (RL) methods, particularly in high-dimensional action spaces and complex reward functions [1][4][6]. Group 1: Framework Overview - DemoGrasp is designed to enhance the efficiency of grasping tasks by utilizing a single successful demonstration trajectory as a starting point, allowing for trajectory editing to adapt to various objects and poses [4][8]. - The framework transforms multi-step Markov Decision Processes (MDP) into a single-step MDP based on trajectory editing, significantly improving learning efficiency and performance transfer to real robots [4][6]. Group 2: Learning Process - The learning process involves editing the trajectory of a successful grasp to accommodate new objects, where adjustments to wrist and finger positions are made to fit unseen items [8][12]. - DemoGrasp employs a simulation environment with thousands of parallel worlds to train the policy network, achieving over 90% success rate after 24 hours of training on a single RTX 4090 GPU [8][10]. Group 3: Performance Metrics - In experiments using the DexGraspNet dataset, DemoGrasp outperformed existing methods, achieving a visual policy success rate of 92% with only a 1% generalization gap between training and testing datasets [10][13]. - The framework demonstrated adaptability across various robotic forms, achieving an average success rate of 84.6% on 175 different objects without adjusting training hyperparameters [14][15]. Group 4: Real-World Application - In real-world tests, DemoGrasp successfully grasped 110 unseen objects with a success rate exceeding 90% for regular-sized items and 70% for challenging flat and small objects [15][16]. - The framework supports complex grasping tasks in cluttered environments, maintaining an 84% success rate for single-instance real-world grabs despite significant variations in lighting and object placement [16][17].
DemoGrasp:一次演示是怎么实现灵巧手通用抓取的?
具身智能之心· 2025-10-10 00:02
Core Insights - The article discusses DemoGrasp, a novel method for universal dexterous grasping that allows robots to learn grasping strategies from a single demonstration [2][3][6]. Group 1: Methodology - DemoGrasp utilizes a simple and efficient reinforcement learning framework that enables any dexterous hand to learn universal grasping strategies by collecting just one successful grasping demonstration [6]. - The method involves editing the trajectory of robot actions to adapt to new objects and poses, determining grasping positions and methods through adjustments in wrist and hand joint angles [2][3]. Group 2: Performance and Validation - In simulation experiments, DemoGrasp achieved a success rate of 95% when using the Shadow hand to manipulate objects from the DexGraspNet dataset, outperforming existing methods [2]. - The method demonstrated excellent transferability, achieving an average success rate of 84.6% on six unseen object datasets, despite being trained on only 175 objects [2]. Group 3: Applications and Capabilities - The strategy successfully grasped 110 previously unseen real-world objects, including small and thin items, and is adaptable to variations in spatial positioning, background, and lighting [3]. - DemoGrasp supports both RGB and depth input types and can be extended to language-guided grasping tasks in cluttered environments [3].
仅需 1 次演示,机器人就能像人手一样抓遍万物?DemoGrasp 刷新灵巧抓取天花板
具身智能之心· 2025-10-04 13:35
点击下方 卡片 ,关注" 具身智能 之心 "公众号 编辑丨具身智能之心 本文只做学术分享,如有侵权,联系删文 >> 点击进入→ 具身智能之心 技术交流群 更多干货,欢迎加入国内首个具身智能全栈学习社区 : 具身智能之心知识星球 (戳我) , 这里包含所有你想要的。 让机器人用多根手指灵活抓取物体,听起来简单,却是机器人操作领域困扰多年的 "老大难" 问题。想象一下:从拿起手机、握住水杯,到夹起薄如纸 片的便签、捏起直径不足 3 厘米的纽扣。这些人类习以为常的动作,对机器人而言,每一步都是高难度挑战。 传统强化学习方法为了让机器人掌握抓取技能,往往要在高自由度(DoFs)的动作空间里反复试错,不仅需要设计复杂的奖励函数和训练课程,还常 常 "学了抓杯子,就忘了抓卡片",泛化能力极差。更棘手的是,仿真环境中训练出的 "抓取高手",一到真实场景就 "水土不服"——没有了精确的物理 参数和物体接触点等 "特权信息",仅靠 RGB 或深度相机的视觉输入,再加上光照、背景变化的干扰,成功率断崖式下跌。 而那些小巧、纤薄的物体,更是传统方法的 "噩梦":硬币容易从指缝滑落,卡片难以找到受力点,想要无碰撞地抓起它们,仿佛让机 ...