Workflow
AI for Industry
icon
Search documents
专访北京移动刘南:“5G+工业互联网”还需关注个性化需求
Core Viewpoint - The integration of 5G and industrial internet is crucial for expanding the large-scale application of 5G, facing challenges such as high costs and fragmented demand across various industries [3][4]. Group 1: 5G and Industrial Internet Integration - The deep integration of 5G and industrial internet is essential for expanding 5G applications, currently facing challenges in cost and demand matching [3][4]. - High costs associated with 5G network construction and equipment upgrades pose a significant burden, especially for small and medium-sized enterprises [3]. - The current "5G + industrial internet" applications primarily address common needs, lacking sufficient alignment with the unique demands of different industries [3]. Group 2: 5G-A Development and Its Implications - 5G-A is a key transitional phase towards 6G, enhancing network bandwidth and providing valuable insights for future 6G development [5]. - The development of 5G-A has led to the emergence of new application scenarios, indicating that 6G should focus on deeper integration with vertical industries [5]. - The emphasis on industry collaboration in 5G-A development highlights the need for a robust ecosystem to support 6G advancements [5]. Group 3: AI for Industry Trends - AI for Industry is expected to experience rapid growth, integrating with 5G-A and industrial internet to create a comprehensive intelligent system [9][10]. - The expansion of AI applications is moving from a few leading sectors to broader industries, enhancing production efficiency and reducing costs [9][10]. - Key issues for the information and communication industry include data quality and security, computational power support, standardization, and talent cultivation [10][11]. Group 4: Challenges in AI Model Development - The transition from general AI models to specialized industry applications faces challenges such as data barriers, algorithm precision, and scene adaptation [10][11]. - Data governance is prioritized to address the scarcity of high-quality datasets, utilizing proprietary tools for data cleaning and transformation [10][11]. - Collaboration with industry partners is essential for developing benchmark applications and optimizing models through practical scenarios [12].
大模型也有“不可能三角”,中国想保持优势还需解决几个难题
Guan Cha Zhe Wang· 2025-05-04 00:36
【演讲/钟新龙,整理/观察者网 唐晓甫】 很多人说"人工智能的历史既长又短"。 其"长",在于人工智能概念可以追溯至1950年,当时计算机奠基人图灵提出了著名的"图灵测试"。他认 为,若第三方无法区分计算系统与人类的回答来源,则可认为该系统具有智能。由此,人工智能的概念 自1950年起便有了理论基础。 其"短",则在于大众层面对人工智能的广泛接触,应当以2022年11月发布的ChatGPT为分水岭,截至今 日仅有两年多的发展历程。 编者按:随着ChatGPT的爆火以及具身智能的大规模出现,利用AI大模型的通用人工智能带 领人类进入第四次工业革命的设想,在欧美世界尤其是金融圈成为最热门的话题。受此影 响,国内不少相关人士也在强调美国领导的西方体系会利用其"算法+数据+算力"的三重优 势对我国形成技术代差,从而导致我国在潜在的"第四次工业革命"中落于人后。 但是随着 人工智能大模型的演进和实践,更多人意识到,这套叙事存在逻辑瑕疵。而在这场再认识的 过程中,更多人对于人工智能的潜力和局限有了更明晰的认知。于是就在今年4月,工业和 信息化部直属单位中国电子信息产业发展研究院(赛迪研究院)正式发布了《人工智能赋能 新型 ...