CFET架构

Search documents
4亿美元的光刻机,开抢!
半导体芯闻· 2025-09-05 10:29
Core Viewpoint - ASML emphasizes the importance of High NA EUV technology for the future of semiconductor manufacturing, with significant advancements already being reported by major clients like Intel and Samsung [1][2]. Group 1: ASML and High NA EUV Technology - ASML confirmed revenue from a High NA EUV machine, which slightly lowered its gross margin but still achieved a strong overall gross margin of 53.7% [1]. - Intel reported using High NA equipment to expose over 30,000 wafers in a single quarter, significantly improving process efficiency by reducing the number of steps from 40 to below 10 [1]. - Samsung noted a 60% reduction in cycle time for a specific layer using High NA technology, indicating its faster maturity compared to earlier low NA EUV devices [1]. Group 2: Samsung's Strategy - Samsung is aggressively purchasing next-generation lithography machines to enhance its wafer foundry business, aiming to improve yield and reduce losses [2][4]. - The company has confirmed that its Exynos 2600 will be the first 2nm GAA chip, with High NA EUV machines expected to play a crucial role in achieving the necessary yield for mass production [2][4]. Group 3: SK Hynix's Developments - SK Hynix has assembled the industry's first Twinscan NXE:5200B High NA EUV lithography system, which will initially serve as a development platform for next-generation DRAM production [7][9]. - This new system is expected to enhance productivity and product performance by allowing for more complex patterns on wafers, thus increasing chip density and efficiency [7][9]. Group 4: Industry Adoption and Future Outlook - ASML anticipates that widespread adoption of High NA EUV technology in mass production will not begin until after 2027 [4][10]. - TSMC has stated that its next-generation processes do not require High NA EUV systems, indicating a cautious approach to adopting this technology [11]. - Micron is also taking a conservative stance, planning to introduce EUV lithography in DRAM production by 2025, with High NA EUV adoption remaining uncertain [12]. Group 5: Cost and Technological Considerations - The high cost of High NA EUV machines, estimated at $400 million each, is a significant barrier to adoption, leading companies to explore alternative technologies [14][15]. - Emerging transistor architectures like GAAFET and CFET may reduce reliance on advanced lithography tools, shifting focus towards etching technologies [14][15].