多色微型化双光子显微镜
Search documents
我国科学家研制出多色微型化双光子显微镜 对大脑进行“彩色直播”(探一线)
Ren Min Ri Bao· 2025-11-28 22:07
你了解大脑吗?作为自然界最复杂的系统之一,大脑由数百亿神经元与数百万亿神经突触协同运作。如 何在生物体自然的行为状态下,实现对大脑深处的清晰观测,一直是脑科学研究的难题。 除了多色成像,这款显微镜还在两个关键性能上实现突破:其一,通过精密光学设计,成像深度超过 850微米,是此前微型化双光子技术的3倍,可透视小鼠大脑皮层深层结构;其二,设计3款可快速切换 的齐焦物镜,30秒即可完成"广角全景"与"精微特写"的切换,满足跨尺度研究需求。 "国际上从2001年就开始研发类似技术,但此前一直未实现广泛应用。"吴润龙介绍,我国团队不仅突破 了光纤与光学设计技术,还实现了全链条国产化。目前,该技术已成功转化,出口至多个国家。 谈及下一步研究计划,吴润龙表示,团队已有明确方向:一方面融合光遗传技术,实现"读""写"闭环 ——不仅能"读取"神经元电活动,还能通过光刺激"操控"特定神经元,比如让静止的小鼠启动运动,或 让运动中的小鼠停止,为光学脑机接口研究奠定基础;另一方面,将成像速度从每秒10—20赫兹提升至 千赫兹,实现大脑电活动的实时"影像记录"。 2014年,程和平院士牵头启动国家重大仪器专项"超高时空分辨微型化双光 ...
对大脑进行“彩色直播”(探一线)
Ren Min Ri Bao· 2025-11-28 22:00
Core Viewpoint - The development of a multi-color miniaturized two-photon microscope enables high-resolution imaging of deep brain structures in freely moving mice, significantly advancing brain science research and understanding of neurological diseases [2][3]. Group 1: Technological Advancements - The new microscope represents a significant technological breakthrough, allowing for multi-color imaging and the observation of various cell types simultaneously, overcoming previous limitations of single-color imaging [3][4]. - The fourth-generation system has achieved advancements in three dimensions: multi-color excitation, deep brain imaging, and multi-scale observation, enhancing the ability to study complex neural interactions [3][4]. - The ultra-broadband anti-resonant hollow-core fiber developed allows for low-loss, low-dispersion transmission of multi-wavelength femtosecond pulse lasers, which is crucial for observing multiple cellular functions [4]. Group 2: Research Implications - The microscope has been successfully used to visualize dynamic changes in brain cells and organelles in Alzheimer's disease model mice, providing critical insights into early cellular changes associated with the disease [4]. - The technology has been fully domesticated and has already been exported to multiple countries, indicating its potential for international application [4]. Group 3: Future Research Directions - Future research will focus on integrating optogenetics to create a "read-write" loop, enabling both the reading of neuronal electrical activity and the optical manipulation of specific neurons [5]. - There is a goal to increase imaging speed from 10-20 Hz to 1 kHz, allowing for real-time recording of brain electrical activity [5].