数智大脑企业级解决方案

Search documents
释放数据要素价值 为金融业引入“智慧大脑”
Jin Rong Shi Bao· 2025-06-11 01:38
"数据在实际场景中的应用不断拓展,催生出一批贴近需求、赋能显著的创新场景,持续释放出强大的 数据动能。"国家数据局政策和规划司副司长栾婕在国家数据局"数据要素×"首场新闻发布会上表示。 作为新时代的"石油",如何实现数据资产转化?如何真正让数据动起来、用起来、活起来?如何让数据 在各个产业、企业中发挥更大价值? 探寻价值转化路径 《"数据要素×"三年行动计划(2024-2026年)》提出,发挥数据要素报酬递增、低成本复用等特点,可优 化资源配置,赋能实体经济,发展新质生产力,推动生产生活、经济发展和社会治理方式深刻变革,对 推动高质量发展具有重要意义。 随着数据要素在经济发展中的影响力持续提升、人工智能技术的迭代升级以及千行百业数智化转型的纵 深推进,数据应用领域格局也在发生深刻变革。唯有以技术突破来破解治理瓶颈,以场景适配加速成果 转化,才能让数据从"沉睡资源"蜕变为驱动产业升级的"硬核资产"。 据国际IT研究与顾问咨询公司高德纳(Gartner)发布的《2025年数据和分析(D&A)重要趋势》报告,当前 数据领域正呈现九大发展趋势,包括AI代理、小语言模型、合成数据、决策智能平台、复合型AI等, 这些趋势 ...
探讨行业数智化转型新路径 神州信息发布“数智大脑”解决方案
Zheng Quan Ri Bao· 2025-06-03 11:08
Core Insights - The recent "Digital Cloud Force 2025·AIxFinTech Parallel Forum" hosted by Digital China Information Service Group focused on AI empowerment in the financial sector, addressing topics such as smart core, credit innovation, financial cloud services, electronic channel evolution, and data asset transformation [2] Group 1: AI and Digital Transformation - The launch of the "Smart Brain" enterprise-level solution integrates data assets with AI technology, aiming to create a digital operation hub that enhances decision-making and operational capabilities [2] - The solution signifies a shift from mere technical application to a management revolution in enterprise intelligence [2] Group 2: Software Development and Collaboration - The future of software development in the financial industry is envisioned as a collaboration between human modelers and AI programmers, with a focus on creating a unified digital platform across the enterprise [2] - The modeling process platform introduced by the company is seen as a critical infrastructure for financial institutions to achieve transformation [2] Group 3: Data Governance and AI Integration - Data governance and value transformation are highlighted as focal points in the industry, with a need for high-quality data supply as a foundation for data assetization [3] - The integration of AI with data governance is explored through three main paths: building knowledge bases, accelerating AI deployment in business scenarios, and driving intelligent R&D through data [3]