AI生成的代码

Search documents
这就是大厂的AI「氛围编程」:老工程师现身说法后,大家绷不住了
机器之心· 2025-08-25 04:13
Core Viewpoint - Vibe coding, popularized by Andrej Karpathy, has gained traction in the tech industry, particularly among FAANG companies, although its definition and implementation remain contentious [1][5]. Group 1: Vibe Coding Popularity - A Reddit post suggests that vibe coding may be more prevalent than expected, with many employees at FAANG companies engaging in this practice [1][5]. - The post's author, an AI software engineer with over 15 years of experience, highlights the integration of AI in coding processes [3][4]. Group 2: Coding Process and Methodology - The coding process begins with reliable design documents and architecture, followed by writing tests before development [4][6]. - Key steps in the process include design reviews, task planning, software development using Test Driven Development (TDD), code review, and pre-release testing [6][13]. - Despite the involvement of AI, the process still requires significant human input, leading to debates about whether it truly qualifies as vibe coding [9][11]. Group 3: Perspectives on the Process - Some developers see value in the structured approach, advocating for detailed technical specifications and pre-development reviews [14][15]. - Others argue that the complexity of the process can hinder development speed, which may benefit independent founders [13][14].
“由 AI 生成的代码,从诞生那一刻起就是「遗留代码」!”
AI科技大本营· 2025-05-12 10:25
Core Viewpoint - The article presents the idea that AI-generated code can be considered "legacy code" from the moment it is created due to its lack of contextual memory and maintenance continuity [1]. Group 1: Characteristics of AI-Generated Code - AI-generated code is inherently "stateless," meaning it lacks the ability to understand the original author's intent or maintain a real-time memory of the coding process [3]. - Each piece of AI-generated code is essentially "written by someone else," as AI constructs its understanding of the context from scratch, without retaining the original input-output transformation process [5]. - AI-generated code is immediately perceived as "old code," skipping the "new code" phase and entering a state of being "legacy code" without the freshness or ongoing maintenance from the original author [5]. Group 2: Implications for Software Development - The current state of AI-generated code suggests a shift in software development practices, where the reliance on prompts and context windows may lead to less emphasis on long-term code maintenance [5]. - The article posits that AI-generated code may serve as a transitional tool in the short to medium term, facilitating a new approach to coding and software development [6]. Group 3: Perspectives from the Community - Comments from the community highlight the historical context of programming theories, suggesting that the complexity of software systems is rooted in collective developer understanding, which may be lost over time [8]. - There is a discussion on whether large language models (LLMs) can develop a theoretical understanding of programming akin to human developers, or if this understanding is inherently different [12].