Atlas 800T A2

Search documents
昇腾 AI 算力集群有多稳?万卡可用度 98%,秒级恢复故障不用愁
第一财经· 2025-06-10 11:25
想象一下,你正在用手机导航规划长途路线,背后可能有几十个 AI 模型同时在分析路况、预测拥 堵;医院用 AI 辅助诊断癌症时,系统需要瞬间处理成百上千张 CT 影像。这些看似简单的智能应 用,背后都依赖着像 " 超级大脑 " 一样的 AI 算力集群在 24 小时不停运转。 超节点需要做大超节点规模,才能充分发挥超平面网络的优势,目前业界没有使用光链路来构建超节 点的成功案例,因此华为团队提出了相应的超节点光链路软件容错方案。通过多层防护体系,借助超 时代答,绿色通道等关键技术实现无超节点级故障,通过链路级重传,光模块动态升降 Lane , HCCL 算子重执行,借轨通信,双层路由收敛, Step 级重调度等特性,实现光模块闪断的故障率容 忍度 >99% 。在新增 10 倍 + 光模块后,通过软件可靠性措施,以及光链路压测技术等,实现光模 块闪断率低至电链路水平,保障了超平面的可靠性。通过构建 Step 级重调度能力,高频的 HBM 多 比特 ECC 故障恢复时间 缩短至 1min ,对于因为故障造成的用户的算力 损失下降 5% 。 高可用助力业务——万卡集群上千亿模型的线性度和训推快恢 线性度指标用于衡量训练 ...
昇腾 AI 算力集群有多稳?万卡可用度 98%,秒级恢复故障不用愁
雷峰网· 2025-06-10 10:30
秒级快恢、超95%线性度,华为如何让算力集群高效稳定工作? 编辑丨李希 01 引言 想象一下,你正在用手机导航规划长途路线,背后可能有几十个 AI 模型同时在分析路况、预测拥堵;医院用 AI 辅助诊断癌症时,系统需要瞬间处理成百上千张 CT 影像。这些看似简单的智能应用,背后都依赖着像 "超 级大脑" 一样的 AI 算力集群在 24 小时不停运转。 高可用核心基础 ——面向超节点的故障感知、管理及容错 AI大集群问题定位复杂,系统规模大、软硬技术栈复杂、调用链长,先要跨域故障定界,然后各域内部故障定 界定位,故障诊断面临巨大挑战;当前定位时间从数小时到数天,技能要求高 ,难以找到故障设备和根因。 华为团队为了让集群运维工具能够快速找到问题原因,有效提升现网问题的闭环效率,提出了 全栈可观测能 力,构建了大规模集群的故障感知能力,主要由集群运行视图、告警视图、网络链路监控、告警接入和配置、 网络流可观测能力组成;同时还提出了包括全栈故障模式库、跨域故障诊断、计算节点故障诊断、网络故障诊 断等四大能力的故障诊断技术。 当前行业水平下,万卡级别的 AI集群平均每天会出现一次甚至多次故障,这不仅严重影响了训练效率,还 ...
敢说永不掉线、秒级恢复,华为的底气是什么?
虎嗅APP· 2025-06-10 10:18
HUAWEI X HUXIU 在通往通用人工智能(AGI)的路上,如何像其他领域一样实现弯道超车,是业界绕不开的 话题。 在过去的十余年时间里,各项单点技术飞速演进,但随着单点技术演进的边际效应递减和系 统复杂度的提升,系统性能的天花板逐步从单点技术的上限演变成系统工程上限:单点优势 越来越像是精致的零件,提升空间有限;但采用系统工程创新,各个部分完美配合、高效协 同,实现整个系统的效能最优,才有更积极的现实意义。 如何在发挥单点技术优势的同时,以整体视角重新构建路径,通过对复杂系统的极致把控与 再组织、找到新的突破可能?解决这个看似不可能的问题,就有望为我们独立引领最前沿技 术发展创造条件。 近期,虎嗅将推出《华为技术披露集》系列内容,通过一系列技术报告,首次全面详述相关 技术细节,为业界提供参考价值。 01 高可用核心基础: 面向超节点的故障感知、管理及容错 AI大集群问题定位复杂,系统规模大、软硬技术栈复杂、调用链长,先要跨域故障定界,然 后各域内部故障定界定位,故障诊断面临巨大挑战;当前定位时间从数小时到数天,技能要 求高 ,难以找到故障设备和根因。华为团队为了让集群运维工具能够快速找到问题原因,有 ...
华为的准万亿大模型,是如何训练的?
虎嗅APP· 2025-05-30 10:18
现在,请大家一起数一下"1"、"2"。 OK,短短2秒钟时间,一个准万亿MoE大模型就已经吃透如何解一道高等数学大题了。 HUAWEI X HUXIU 三分之一个世纪前,加拿大学者们提出了经典的MoE模型神经网络结构,在人类探索AI的 「石器时代」中,为后世留下了变革的火种。 近十年前,美国硅谷的互联网巨擎在理论和工程等方面,突破了MoE模型的原始架构,让这 个原本被置于学术高阁的理念,化身成为了随后AI竞争的导火索。 如今,后发优势再一次来到了大洋此岸,以华为为代表的中国科技企业,纷纷提出对MoE架 构的优化重组方案。尤其是华为的MoGE架构,不仅克服了MoE负载不均衡及效率瓶颈的弊 病,还能够降本增效,便于训练和部署。 AI之战远未终结,但正如在其他领域中「多快好省」的中国产业底色一样,大模型这棵生于 西方长于彼岸的科技树,也同样会被东方智慧经手后,进化为更加普适和亲切的工具。 近期,虎嗅将打造《华为技术披露集》系列内容,通过一连串的技术报告,首次全面披露相 关的技术细节。 希望本系列内容能为业界起到参考价值,也希望更多人能与华为一起,共同打造长期持续的 开放协作生态环境,让昇腾生态在中国茁壮成长。 《华 ...
每2秒吃透一道高数大题!华为终于揭秘准万亿MoE昇腾训练系统全流程
华尔街见闻· 2025-05-30 09:38
现在,请大家一起 数一下"1"、"2" 。 OK,短短2秒钟时间,一个 准万亿MoE大模型 就已经吃透如何解一道 高等数学大题 了! 而且啊,这个大模型还是 不用GPU 来训练,全流程都是大写的 "国产" 的那种。 这,就是华为通 过 " 昇腾+Pan gu Ultra MoE" 这套 组合拳解锁的效果—— 不仅实现了国产算力与国产模型全流程自主可控的训练闭环,更是在集群训练系统性能方面达到行 业领先水平。 有多领先?来看一组数据: 预训练阶段:昇腾Atlas 800T A2万卡集群MFU提升至41% 后训练阶段:单CloudMatrix 384超节点吞吐达35K Tokens/s 值得一提的是,华为还 首次 把背后的一大秘籍给亮了出来。 具体来说,华为在这次发布的 技术报告 中,披露了在昇腾CloudMatrix 384超节点上,高效打通 大稀疏比MoE强化学习后训练框架的关键技术。 此举可以说是让以强化学习(RL)为核心机制的后训练,进入到了超节点集群时代。 不用GPU的"炼"准万亿大模型方法 在深入华为Pangu Ultra MoE训练系统全流程之前,老规矩,我们还是先来了解一下此前的技术 痛点。 整体 ...
华为AI实力!不用GPU,大模型每2秒吃透一道高数大题!
第一财经· 2025-05-30 09:32
现在,请大家一起 数一下"1"、"2" 。 而且啊,这个大模型还是 不用GPU 来训练,全流程都是大写的 "国产" 的那种。 这,就是华为通过 "昇腾+Pangu Ultra MoE" 这套组合拳解锁的效果—— OK,短短2秒钟时间,一个 准万亿MoE大模型 就已经 吃透 如何解一道 高等数学大题 了! 不仅实现了国产算力与国产模型全流程自主可控的训练闭环,更是在集群训练系统性能方面达到行业领先 水平。 有多领先?来看一组数据: · 预训练阶段:昇腾Atlas 800T A2万卡集群MFU提升至41% · 后训练阶段:单CloudMatrix 384超节点吞吐达35K Tokens/s 不用GPU的"炼"准万亿大模型方法 在深入华为Pangu Ultra MoE训练系统全流程之前,老规矩,我们还是先来了解一下此前的技术痛点。 整体来看,在当前的MoE预训练和强化学习后训练过程中所存在的挑战可以归结为六点: · 并行策略配置困难 :面对数据并行、张量并行、专家并行、流水线并行和序列并行等多种策略的组合 选择,加上稀疏激活导致的负载不平衡因素,很难通过人工经验找到最优的并行配置方案。 · All-to-All通信 ...