FlowSearch
Search documents
李飞飞发布全新世界模型RTFM;德勤向澳洲政府退钱;OpenAI放宽成人内容引发争议|一周AI要闻回顾
36氪· 2025-10-18 09:07
Core Insights - The article discusses the advancements in AI technologies, particularly focusing on new models and applications that enhance capabilities in various sectors, including retail, video generation, and AI infrastructure [2][3][4][5][12]. Group 1: AI Model Developments - Li Fei-Fei's World Labs launched the RTFM model, capable of real-time rendering on a single H100 GPU, addressing scalability issues in world modeling [2]. - OpenAI upgraded its Sora2 model, doubling video generation time to 15 seconds for free users and 25 seconds for Pro users, while also introducing audio generation features [3][4]. - Google's Veo 3.1 model enhances video generation with audio support and object addition capabilities, deployed across various platforms [5]. Group 2: Retail Innovations - Taobao introduced six AI shopping applications aimed at enhancing user experience during the upcoming Double 11 shopping festival, marking a significant AI integration in retail [2][4]. - AI tools for merchants on Taobao have shown impressive results, with AI-generated images and videos increasing product click-through rates by 10% [4]. Group 3: AI Infrastructure and Financials - Oracle reported a 35% gross margin on a six-year AI infrastructure project worth $60 billion, with remaining performance obligations exceeding $500 billion [12]. - Google plans to invest $15 billion in India to establish a data center and AI hub, marking its largest investment in the region [13]. Group 4: Market Trends and Challenges - OpenAI's user base is large, with 800 million monthly active users, but only 5% are paying customers, leading to significant operational losses [8]. - A report warns that the current AI investment boom may exceed historical bubbles, with concerns about diminishing returns on large language models [14].
将科研脏活累活真·丢给AI!上海AI Lab推出深度科研智能体FlowSearch
量子位· 2025-10-14 04:08
InternAgent团队 投稿 量子位 | 公众号 QbitAI 将复杂科研过程自动化落地,上海人工智能实验室推出FlowSearch! 在GAIA、HLE、GPQA以及TRQA等科研基准上, FlowSearch不仅实现了性能全面领先,还展示了AI在复杂科研任务中的动态协作与深度 推理能力。 展开来说,当AI在问答基准和标准化测试中表现卓越之时,其进行科学研究的能力也在被更多关注。 科学研究不同于解题或信息检索,它是一个开放性、长期且复杂的认知过程——研究者需要提出原创问题、设计实验方案、收集并整合多源证 据,并在不断迭代中形成系统结论。 这样的过程远超计算能力本身,它要求的是创新思维、动态推理能力以及对复杂知识关系的精准掌控。 而 FlowSearch ,正是一个 由动态结构化知识流驱动的深度科研智能体 。 它通过动态结构化知识流构建科研任务的多层依赖图,并在多智能体框架下实现任务的并行探索、知识的递归整合和流程的自适应优化。 与传统"输入—计算—输出"的封闭式AI不同,FlowSearch更像一个理解你研究思路的伙伴——当发现新信息,它会主动调整计划;当证据链 不完整,它会引导进一步探索;当推理偏离目 ...