Isaac Gym
Search documents
都在说VLA,很多同学连demo都跑不好......
具身智能之心· 2025-12-03 10:00
Core Viewpoint - The article discusses the challenges and advancements in the field of VLA (Vision-Language Alignment) models, emphasizing the importance of real machine data and practical applications in robotics and embodied intelligence. Group 1: Challenges in VLA Implementation - Many students struggle with the transition from theoretical knowledge to practical application, often finding it difficult to achieve satisfactory results without hands-on experience [2][6] - The reliance on real machine data for effective training and deployment of VLA models is highlighted, with a focus on the limitations of simulation data [2][8] Group 2: Data Collection and Training - Data collection methods for VLA include imitation learning and reinforcement learning, with a particular emphasis on remote operation and VR techniques [8] - The training of VLA models requires careful tuning and optimization, with specific challenges noted for models like π0 and π0.5, which demand a high level of expertise [10][12] Group 3: Deployment and Optimization - Post-training, VLA models often require optimization techniques such as quantization and distillation to reduce parameter size while maintaining performance [12] - The deployment of VLA models on edge devices presents significant challenges due to their typically large parameter sizes [12] Group 4: Educational Initiatives - The article introduces a practical course aimed at helping individuals learn about VLA, covering various aspects such as hardware, data collection, algorithm implementation, and real-world applications [14][30] - The course is designed for a diverse audience, including students and professionals looking to transition into the field of embodied intelligence [27][30]
NVIDIA最新|Isaac Gym 继任者来啦!解决传统仿真在效率、保真度上的痛点(GPU 加速)
具身智能之心· 2025-11-12 00:03
点击下方 卡片 ,关注" 具身智能 之心 "公众号 作者丨 NVIDIA团队 编辑丨具身智能之心 本文只做学术分享,如有侵权,联系删文 >> 点击进入→ 具身智能之心 技术交流群 更多干货,欢迎加入国内首个具身智能全栈学习社区 : 具身智能之心知识星球 (戳我) , 这里包含所有你想要的。 Isaac Lab 作为 Isaac Gym 的继任者,以 GPU 原生仿真为核心,融合高保真物理引擎、照片级渲染与模块化架构,构建了支持大规模多模态机器人学习的一站式 平台。它不仅解决了传统仿真在效率、保真度与扩展性上的痛点,还整合了感知、控制、数据生成等全流程工具,为机器人学习提供了从模拟训练到真实部署的 完整解决方案,已在 locomotion、操作、导航等多个领域验证了其通用性与高效性。 为什么需要新一代机器人仿真框架? 传统机器人研发面临 "真实场景数据获取难、极端情况测试风险高、算法迭代效率低" 三大核心问题,而现有仿真工具难以同时满足 "高保真、大规模、多模态" 的需求: Isaac Lab 针对性解决这些问题,通过 GPU 全流程加速、标准化数据格式与模块化架构,实现 "高效仿真、灵活扩展、无缝迁移" 的核 ...