OpenEMMA
Search documents
刷完了端到端和VLA新工作,这9个开源项目最值得复现......
自动驾驶之心· 2026-01-10 03:47
以下文章来源于深蓝AI ,作者深蓝学院 深蓝AI . 专注于人工智能、机器人与自动驾驶的学习平台。 来源 | 深蓝AI 点击下方 卡片 ,关注" 自动驾驶之心 "公众号 戳我-> 领取 自动驾驶近30个 方向 学习 路线 >>自动驾驶前沿信息获取 → 自动驾驶之心知识星球 本文只做学术分享,如有侵权,联系删文 开源是最诚实的答案。 本文 精选了 2025 年高价值的开源项目 ,不以会议论英雄,只看 复现热度 与 工程参考性 。这些仓库提供了从数据清洗、训练配方到闭环评测的全套 方案,是快速上手端到端自动驾驶的最佳捷径。 需要说明的是,2025 年开源的自动驾驶项目真的太多了,随着AI技术的发展,开源项目数量正在快速增长,优秀的工作远不止本文所覆盖的范围。本文主要以 GitHub 上已公开的项目为线索进行整理,筛 选标准以代码可获取性和项目活跃度为主(具有一定Star数量),难免存在遗漏。未被提及的相关工作同样具有参考价值,读者可结合自身研究方向进一步查阅和补充。 DiffusionDrive Github Star: 0 . 9 k 机构: 德克萨斯农工大学;密歇根大学;多伦多大学 亮点: OpenEMMA ...
自动驾驶端到端VLA落地,算法如何设计?
自动驾驶之心· 2025-06-22 14:09
Core Insights - The article discusses the rapid advancements in end-to-end autonomous driving, particularly focusing on Vision-Language-Action (VLA) models and their applications in the industry [2][3]. Group 1: VLA Model Developments - The introduction of AutoVLA, a new VLA model that integrates reasoning and action generation for end-to-end autonomous driving, shows promising results in semantic reasoning and trajectory planning [3][4]. - ReCogDrive, another VLA model, addresses performance issues in rare and long-tail scenarios by utilizing a three-stage training framework that combines visual language models with diffusion planners [7][9]. - Impromptu VLA introduces a dataset aimed at improving VLA models' performance in unstructured extreme conditions, demonstrating significant performance improvements in established benchmarks [14][24]. Group 2: Experimental Results - AutoVLA achieved competitive performance metrics in various scenarios, with the best-of-N method reaching a PDMS score of 92.12, indicating its effectiveness in planning and execution [5]. - ReCogDrive set a new state-of-the-art PDMS score of 89.6 on the NAVSIM benchmark, showcasing its robustness and safety in driving trajectories [9][10]. - The OpenDriveVLA model demonstrated superior results in open-loop trajectory planning and driving-related question-answering tasks, outperforming previous methods on the nuScenes dataset [28][32]. Group 3: Industry Trends - The article highlights a trend among major automotive manufacturers, such as Li Auto, Xiaomi, and XPeng, to invest heavily in VLA model research and development, indicating a competitive landscape in autonomous driving technology [2][3]. - The integration of large language models (LLMs) with VLA frameworks is becoming a focal point for enhancing decision-making capabilities in autonomous vehicles, as seen in models like ORION and VLM-RL [33][39].