DiffusionDrive

Search documents
全面超越DiffusionDrive, GMF-Drive:全球首个Mamba端到端SOTA方案
理想TOP2· 2025-08-18 12:43
Core Insights - The article discusses the advancements in end-to-end autonomous driving, emphasizing the importance of multi-modal fusion architectures and the introduction of GMF-Drive as a new framework that improves upon existing methods [3][4][44]. Group 1: End-to-End Autonomous Driving - End-to-end autonomous driving has gained widespread acceptance as it directly maps raw sensor inputs to driving actions, reducing reliance on intermediate representations and information loss [3]. - Recent models like DiffusionDrive and GoalFlow demonstrate strong capabilities in generating diverse and high-quality driving trajectories [3]. Group 2: Multi-Modal Fusion Challenges - A key bottleneck in current systems is the integration of heterogeneous inputs from different sensors, with existing methods often relying on simple feature concatenation rather than structured information integration [4][6]. - The article highlights that current multi-modal fusion architectures, such as TransFuser, show limited performance improvements compared to single-modal architectures, indicating a need for more sophisticated integration methods [6]. Group 3: GMF-Drive Overview - GMF-Drive, developed by teams from University of Science and Technology of China and China University of Mining and Technology, includes three modules aimed at enhancing multi-modal fusion for autonomous driving [7]. - The framework combines a gated Mamba fusion approach with spatial-aware BEV representation, addressing the limitations of traditional transformer-based methods [7][44]. Group 4: Innovations in Data Representation - The article introduces a 14-dimensional pillar representation that retains critical 3D geometric features, enhancing the model's perception capabilities [16][19]. - This representation captures local surface geometry and height variations, allowing the model to differentiate between objects with similar point densities but different structures [19]. Group 5: GM-Fusion Module - The GM-Fusion module integrates multi-modal features through gated channel attention, BEV-SSM, and hierarchical deformable cross-attention, achieving linear complexity while maintaining long-range dependency modeling [19][20]. - The module's design allows for effective spatial dependency modeling and improved feature alignment between camera and LiDAR data [19][40]. Group 6: Experimental Results - GMF-Drive achieved a PDMS score of 88.9 on the NAVSIM benchmark, outperforming the previous best model, DiffusionDrive, by 0.8 points, demonstrating the effectiveness of the GM-Fusion architecture [29][30]. - The framework also showed significant improvements in key sub-metrics, such as driving area compliance and vehicle progression rate, indicating enhanced safety and efficiency [30][31]. Group 7: Conclusion - The article concludes that GMF-Drive represents a significant advancement in autonomous driving frameworks by effectively combining geometric representations with spatially aware fusion techniques, achieving new performance benchmarks [44].
全面超越DiffusionDrive!中科大GMF-Drive:全球首个Mamba端到端SOTA方案
自动驾驶之心· 2025-08-13 23:33
Core Viewpoint - The article discusses the GMF-Drive framework developed by the University of Science and Technology of China, which addresses the limitations of existing multi-modal fusion architectures in end-to-end autonomous driving by integrating gated Mamba fusion with spatial-aware BEV representation [2][7]. Summary by Sections End-to-End Autonomous Driving - End-to-end autonomous driving has gained recognition as a viable solution, directly mapping raw sensor inputs to driving actions, thus minimizing reliance on intermediate representations and information loss [2]. - Recent models like DiffusionDrive and GoalFlow have demonstrated strong capabilities in generating diverse and high-quality driving trajectories [2][8]. Multi-Modal Fusion Challenges - A key bottleneck in current systems is the multi-modal fusion architecture, which struggles to effectively integrate heterogeneous inputs from different sensors [3]. - Existing methods, primarily based on the TransFuser style, often result in limited performance improvements, indicating a simplistic feature concatenation rather than structured information integration [5]. GMF-Drive Framework - GMF-Drive consists of three modules: a data preprocessing module that enhances geometric information, a perception module utilizing a spatial-aware state space model (SSM), and a trajectory planning module employing a truncated diffusion strategy [7][13]. - The framework aims to retain critical 3D geometric features while improving computational efficiency compared to traditional transformer-based methods [11][16]. Experimental Results - GMF-Drive achieved a PDMS score of 88.9 on the NAVSIM dataset, outperforming the previous best model, DiffusionDrive, by 0.8 points [32]. - The framework demonstrated significant improvements in key metrics, including a 1.1 point increase in the driving area compliance score (DAC) and a maximum score of 83.3 in the ego vehicle progression (EP) [32][34]. Component Analysis - The study conducted ablation experiments to assess the contributions of various components, confirming that the integration of geometric representations and the GM-Fusion architecture is crucial for optimal performance [39][40]. - The GM-Fusion module, which includes gated channel attention, BEV-SSM, and hierarchical deformable cross-attention, significantly enhances the model's ability to process multi-modal data effectively [22][44]. Conclusion - GMF-Drive represents a novel end-to-end autonomous driving framework that effectively combines geometric-enhanced pillar representation with a spatial-aware fusion model, achieving superior performance compared to existing transformer-based architectures [51].
可以留意一下10位业内人士如何看VLA
理想TOP2· 2025-07-21 14:36
Core Viewpoints - The current development of cutting-edge technologies in autonomous driving is not yet fully mature for mass production, with significant challenges remaining to be addressed [1][27][31] - Emerging technologies such as VLA/VLM, diffusion models, closed-loop simulation, and reinforcement learning are seen as potential key directions for future exploration in autonomous driving [6][7][28] - The choice between deepening expertise in autonomous driving or transitioning to embodied intelligence depends on individual circumstances and market dynamics [19][34] Group 1: Current Technology Maturity - The BEV (Bird's Eye View) perception model has reached a level of maturity suitable for mass production, while other models like E2E (End-to-End) are still in the experimental phase [16][31] - There is a consensus that the existing models struggle with corner cases, particularly in complex driving scenarios, indicating that while basic functionalities are in place, advanced capabilities are still lacking [16][24][31] - The industry is witnessing a shift towards utilizing larger models and advanced techniques to enhance scene understanding and decision-making processes in autonomous vehicles [26][28] Group 2: Emerging Technologies - VLA/VLM is viewed as a promising direction for the next generation of autonomous driving, with the potential to improve reasoning capabilities and safety [2][28] - The application of reinforcement learning is recognized as having significant potential, particularly when combined with effective simulation environments [6][32] - Diffusion models are being explored for their ability to generate multi-modal trajectories, which could be beneficial in uncertain driving conditions [7][26] Group 3: Future Directions - Future advancements in autonomous driving technology are expected to focus on enhancing safety, improving passenger experience, and achieving comprehensive scene coverage [20][28] - The integration of closed-loop simulations and data-driven approaches is essential for refining autonomous driving systems and ensuring their reliability [20][30] - The industry is moving towards a data-driven model where the efficiency of data collection, cleaning, labeling, training, and validation will determine competitive advantage [20][22] Group 4: Career Choices - The decision to specialize in autonomous driving or shift to embodied intelligence should consider personal interests, market trends, and the maturity of each field [19][34] - The autonomous driving sector is perceived as having more immediate opportunities for impactful work compared to the still-developing field of embodied intelligence [19][34]