Workflow
RFdiffusion3
icon
Search documents
诺奖得主David Baker最新论文:AI设计蛋白新突破,精准设计蛋白结合剂,克服“不可成药”靶点
生物世界· 2026-01-27 08:00
Core Insights - The article highlights a significant breakthrough in protein design using conditional RFdiffusion to create high-affinity binding proteins for hydrophilic targets, led by Nobel laureate David Baker [4][7]. Design Strategy - The design strategy involves generating extended beta-sheet structures that geometrically match the edges of the target protein's beta strands through conditional RFdiffusion [5]. - Specially designed hydrogen bond groups are created to complement the polar groups on the target protein [6]. Experimental Validation - This technology overcomes traditional limitations in computational protein design, significantly expanding the range of target proteins for designed binding agents, particularly addressing challenges related to hydrophilic interactions. This advancement holds substantial value for drug development and protein function research [7]. - The designed protein binding agents exhibit high specificity and affinity, achieving picomolar to nanomolar levels of binding affinity for important protein targets such as KIT and PDGFRα [9]. Training and Courses - A series of online courses are offered, including AI protein design, antimicrobial peptide design, and computer-aided drug design, aimed at equipping participants with cutting-edge knowledge and practical skills in protein design [8]. - Various promotional offers are available for course registrations, including discounts for early sign-ups and bundled course registrations [8]. Future Trends - The article emphasizes the importance of AI protein design as a key technology to watch in 2026, with a growing demand for training and resources in this field, as evidenced by the high attendance and positive feedback from previous training sessions [7].
诺奖得主David Baker推出RFdiffusion3,颠覆蛋白质设计格局,开启全原子生物分子设计新时代
生物世界· 2025-09-22 04:14
Core Viewpoint - The article discusses the advancements in protein design using generative artificial intelligence, particularly focusing on the breakthrough of RFdiffusion3, which allows for atomic-level precision in designing proteins that can interact with specific small molecules, DNA, and other biomolecules [9][24]. Group 1: RFdiffusion3 Overview - RFdiffusion3 represents a significant advancement in protein design, enabling the design of proteins with atomic-level precision, including interactions with non-protein components [9][10]. - The model is built on previous versions, RFdiffusion and RFdiffusion2, and offers improvements in accuracy, efficiency, and versatility [10][28]. - RFdiffusion3 can handle complex atomic constraints, such as hydrogen bonds and solvent accessibility, and is capable of designing various interactions, including protein-protein, protein-small molecule, and protein-nucleic acid interactions [10][28]. Group 2: Performance and Applications - In benchmark tests, RFdiffusion3 demonstrated superior performance with a computational cost only one-tenth of previous methods, making it significantly more efficient [3][10]. - The model has shown excellent results in designing DNA-binding proteins and enzymes, achieving a binding activity of 5.89±2.15 μM for a designed DNA-binding protein and a Kcat/Km value of 3557 for a designed cysteine hydrolase [21][28]. - RFdiffusion3 has outperformed its predecessor in multiple target designs, producing an average of 8.2 unique successful clusters compared to 1.4 from RFdiffusion [15]. Group 3: Technical Innovations - The core innovation of RFdiffusion3 lies in its all-atom diffusion model, which allows for simultaneous simulation of protein backbone and side chains, as well as interactions with non-protein components [9][10]. - The model employs a unified representation of amino acids, standardizing them to 14 atoms, which facilitates the handling of varying side chain atom counts [13][14]. - The architecture is based on a Transformer U-Net, which includes downsampling, sparse transformer modules, and upsampling to predict coordinate updates [14]. Group 4: Future Implications - The introduction of RFdiffusion3 marks a paradigm shift in protein design, enabling unprecedented control over complex functionalities, such as specifying enzyme active sites and controlling hydrogen bond states [24][25]. - As the technology continues to evolve, it is expected to lead to innovative therapies, new types of proteases, and biomaterials, fulfilling the vision of "designing life molecules" [25].