BEV感知
Search documents
正式结课!工业界大佬带队三个月搞定端到端自动驾驶
自动驾驶之心· 2025-10-27 00:03
Core Viewpoint - 2023 marks the year of end-to-end production, with 2024 expected to be a significant year for end-to-end production in the automotive industry, as leading new forces and manufacturers have already achieved end-to-end production [1][3]. Group 1: End-to-End Production Development - The automotive industry is witnessing rapid development in end-to-end methods, particularly the one-stage approach exemplified by UniAD, which directly models vehicle trajectories from sensor inputs [1][3]. - There are two main paradigms in the industry: one-stage and two-stage methods, with the one-stage approach gaining traction and leading to various derivatives based on perception, world models, diffusion models, and VLA [3][5]. Group 2: Course Overview - A course titled "End-to-End and VLA Autonomous Driving" has been launched, focusing on cutting-edge algorithms in both one-stage and two-stage end-to-end methods, aimed at bridging academic and industrial advancements [5][15]. - The course is structured into several chapters, covering the history and evolution of end-to-end methods, background knowledge on VLA, and detailed discussions on both one-stage and two-stage approaches [9][10][12]. Group 3: Key Technologies - The course emphasizes critical technologies such as BEV perception, visual language models (VLM), diffusion models, and reinforcement learning, which are essential for mastering the latest advancements in autonomous driving [5][11][19]. - The second chapter of the course is highlighted as containing the most frequently asked technical keywords for job interviews in the next two years [10]. Group 4: Practical Applications - The course includes practical assignments, such as RLHF fine-tuning, allowing participants to apply their knowledge in real-world scenarios and understand how to build and experiment with pre-trained and reinforcement learning modules [13][19]. - The curriculum also covers various subfields of one-stage end-to-end methods, including those based on perception, world models, diffusion models, and VLA, providing a comprehensive understanding of the current landscape in autonomous driving technology [14][19].
执行力是当下自动驾驶的第一生命力
自动驾驶之心· 2025-10-17 16:04
Core Viewpoint - The article discusses the evolving landscape of the autonomous driving industry in China, highlighting the shift in competitive dynamics and the increasing investment in autonomous driving technologies as a core focus of AI development [1][2]. Industry Trends - The autonomous driving sector has undergone significant changes over the past two years, with new players entering the market and existing companies focusing on improving execution capabilities [1]. - The industry experienced a flourishing period before 2022, where companies with standout technologies could thrive, but has since transitioned into a more competitive environment that emphasizes addressing weaknesses [1]. - Companies that remain active in the market are progressively enhancing their hardware, software, AI capabilities, and engineering implementation to survive and excel [1]. Future Outlook - By 2025, the industry is expected to enter a "calm period," where unresolved technical challenges in areas like L3, L4, and Robotaxi will continue to present opportunities for professionals in the field [2]. - The article emphasizes the importance of comprehensive skill sets for individuals in the autonomous driving sector, suggesting that those with a short-term profit mindset may not endure in the long run [2]. Community and Learning Resources - The "Autonomous Driving Heart Knowledge Planet" community has been established to provide a comprehensive platform for learning and sharing knowledge in the autonomous driving field, featuring over 4,000 members and aiming for a growth to nearly 10,000 in the next two years [4][17]. - The community offers a variety of resources, including video content, learning pathways, Q&A sessions, and job exchange opportunities, catering to both beginners and advanced learners [4][6][18]. - Members can access detailed technical routes and practical solutions for various autonomous driving challenges, significantly reducing the time needed for research and learning [6][18]. Technical Focus Areas - The community has compiled over 40 technical routes related to autonomous driving, covering areas such as end-to-end learning, multi-modal models, and various simulation platforms [18][39]. - There is a strong emphasis on practical applications, with resources available for data processing, 4D labeling, and engineering practices in autonomous driving [12][18]. Job Opportunities - The community facilitates job opportunities by connecting members with openings in leading autonomous driving companies, providing a platform for resume submissions and internal referrals [13][22].
工业界和学术界都在怎么搞端到端和VLA?
自动驾驶之心· 2025-10-17 00:03
Core Insights - The article discusses the evolution of end-to-end algorithms in autonomous driving, highlighting the transition from modular production algorithms to end-to-end and now to Vision-Language Alignment (VLA) models [1][3] - It emphasizes the rich technology stack involved in end-to-end algorithms, including BEV perception, visual language models (VLM), diffusion models, reinforcement learning, and world models [3] Summary by Sections End-to-End Algorithms - End-to-end algorithms are categorized into two main paradigms: single-stage and two-stage, with UniAD being a representative of the single-stage approach [1] - Single-stage can further branch into various subfields, particularly those based on VLA, which have seen a surge in related publications and industrial applications in recent years [1] Courses Offered - The article promotes two courses: "End-to-End and VLA Autonomous Driving Small Class" and "Practical Course on Autonomous Driving VLA and Large Models," aimed at helping individuals quickly and efficiently enter the field [3] - The "Practical Course" focuses on VLA, covering topics from VLM as an autonomous driving interpreter to modular and integrated VLA, along with detailed theoretical foundations [3][12] Instructor Team - The instructor team includes experts from both academia and industry, with backgrounds in multi-modal perception, autonomous driving VLA, and large model frameworks [8][11][14] - Notable instructors have published numerous papers in top-tier conferences and have extensive experience in research and practical applications in autonomous driving and large models [8][11][14] Target Audience - The courses are designed for individuals with a foundational understanding of autonomous driving, familiar with basic modules, and have knowledge of transformer models, reinforcement learning, and BEV perception [15][17]
学术和量产的分歧,技术路线的持续较量!从技术掌舵人的角度一览智驾的十年路....
自动驾驶之心· 2025-10-14 23:33
Core Insights - The article discusses the significant technological advancements in autonomous driving over the past decade, highlighting key innovations such as Visual Transformers, BEV perception, multi-sensor fusion, end-to-end autonomous driving, large models, VLA, and world models [3][4]. Group 1: Technological Milestones - The past ten years have seen remarkable technological developments in autonomous driving, with various solutions emerging through the collision and fusion of different technologies [3]. - A roundtable discussion is set to reflect on the technological milestones in the industry, focusing on the debate between world models and VLA [4][13]. Group 2: Industry Perspectives - The roundtable will feature insights from top industry leaders, discussing the evolution of autonomous driving technology and providing career advice for newcomers in the field [4][5]. - The discussion will also cover the perspectives of academia and industry regarding L3 autonomous driving, emphasizing the convergence of research directions and the practical implementation in engineering [13]. Group 3: Future Directions - The article raises questions about the future direction of autonomous driving technology, particularly the role of end-to-end systems as a foundational element of intelligent driving technology [13]. - It highlights the ongoing competition between academic research and engineering practices in the field, suggesting a need for new entrants to adapt and innovate [13].
自动驾驶之心双节活动即将截止(课程/星球/硬件优惠)
自动驾驶之心· 2025-10-08 23:33
Core Insights - The article emphasizes the importance of continuous learning and engagement in the field of autonomous driving technology, highlighting various educational resources and community interactions available for professionals and enthusiasts in the industry. Group 1: Educational Offerings - The platform offers a significant discount on courses, with an 80% off coupon and a 70% discount card available for users [3] - New users can benefit from a 30% discount on renewals and a 50% discount for specific offerings [4] - A comprehensive overview of core content related to autonomous driving is provided, including 40+ learning paths covering advanced topics [5] Group 2: Community Engagement - The platform facilitates direct interactions with industry leaders and academic experts, allowing for face-to-face discussions on cutting-edge topics in autonomous driving [6] - Key discussions include the competition between VLA and WA, future directions of autonomous driving, and the intricacies of world models [6] - The community also features high-level courses on various technical subjects such as trajectory prediction, camera calibration, and 3D point cloud detection [6]
自动驾驶之心双节活动进行中(课程/星球/硬件优惠)
自动驾驶之心· 2025-10-04 04:04
Group 1 - The article highlights the importance of continuous learning in the field of autonomous driving, emphasizing the need for professionals to stay updated with the latest technologies and trends [6] - It mentions a variety of advanced topics and learning routes available, including VLA, world models, closed-loop simulation, and diffusion models, indicating a comprehensive curriculum for learners [6] - The platform offers opportunities for direct interaction with industry leaders and academic experts, facilitating knowledge exchange and networking [6] Group 2 - The article outlines various promotional offers for new users, including discounts on courses and membership renewals, aimed at attracting more participants to the learning community [4][3] - It lists seven premium courses available, covering essential topics such as trajectory prediction, camera calibration, and 3D point cloud detection, catering to both beginners and advanced learners [6] - The content emphasizes the significance of face-to-face discussions with top authors and experts in the field, enhancing the learning experience through direct engagement [6]
论文解读之港科PLUTO:首次超越Rule-Based的规划器!
自动驾驶之心· 2025-09-15 23:33
Core Viewpoint - The article discusses the development and features of the PLUTO model within the end-to-end autonomous driving domain, emphasizing its unique two-stage architecture and its direct encoding of structured perception outputs for downstream control tasks [1][2]. Summary by Sections Overview of PLUTO - PLUTO is characterized by its three main losses: regression loss, classification loss, and imitation learning loss, which collectively contribute to the model's performance [7]. - Additional auxiliary losses are incorporated to aid model convergence [9]. Course Introduction - The article introduces a new course titled "End-to-End and VLA Autonomous Driving," developed in collaboration with top algorithm experts from domestic leading manufacturers, aimed at addressing the challenges faced by learners in this rapidly evolving field [12][15]. Learning Challenges - The course addresses the difficulties learners face due to the fast-paced development of technology and the fragmented nature of knowledge across various domains, making it hard for beginners to grasp the necessary concepts [13]. Course Features - The course is designed to provide quick entry into the field, build a framework for research capabilities, and combine theory with practical applications [15][16][17]. Course Outline - The course consists of several chapters covering topics such as the history and evolution of end-to-end algorithms, background knowledge on various technologies, and detailed discussions on both one-stage and two-stage end-to-end methods [20][21][22][29]. Practical Application - The course includes practical assignments, such as RLHF fine-tuning, allowing students to apply their theoretical knowledge in real-world scenarios [31]. Instructor Background - The instructor, Jason, has a strong academic and practical background in cutting-edge algorithms related to end-to-end and large models, contributing to the course's credibility [32]. Target Audience and Expected Outcomes - The course is aimed at individuals with a foundational understanding of autonomous driving and related technologies, with the goal of elevating their skills to the level of an end-to-end autonomous driving algorithm engineer within a year [36].
用QA问答详解端到端落地:[UniAD/PARA-Drive/SpareDrive/VADv2]
自动驾驶之心· 2025-08-29 16:03
Core Viewpoint - The article discusses various end-to-end models in autonomous driving, focusing on their architectures and functionalities, particularly the UniAD framework and its modular components for perception, prediction, and planning [4][13]. Group 1: End-to-End Models - End-to-end models are categorized into two types: completely black-box models like OneNet, which optimize the planner directly, and modular end-to-end models that reduce error accumulation through interactions between perception, prediction, and planning modules [3]. - The UniAD framework consists of four main parts: multi-view camera input, backbone for BEV feature extraction, perception for scene-level understanding, and prediction for multi-mode trajectory forecasting [4]. Group 2: Specific Model Architectures - TrackFormer utilizes three types of queries: detection, tracking, and ego queries, with a dynamic length for the tracking query set based on object disappearance [6]. - MotionFormer operates similarly to RNN structures, processing sequential blocks to predict future states based on previous outputs, focusing on agent-level knowledge [9]. - MapFormer employs Panoptic Segformer for environment segmentation, distinguishing between countable instances and uncountable elements [10]. Group 3: Advanced Techniques - PARA-Drive modifies the UniAD framework by adjusting the connections between perception, prediction, and planning modules, allowing for parallel training and improved inference speed [13]. - Symmetric sparse perception is divided into two parallel parts for agent detection and map perception, utilizing a DETR paradigm for both tasks [20]. - The planning transformer integrates various tokens to output action probabilities, selecting the most probable action based on human trajectory data [23]. Group 4: Community and Learning Resources - The article highlights the establishment of numerous technical discussion groups related to autonomous driving, covering over 30 learning paths and involving nearly 300 companies and research institutions [27][28].
公司通知团队缩减,懂端到端的留下来了。。。
自动驾驶之心· 2025-08-19 23:32
Core Viewpoint - The article discusses the rapid evolution and challenges in the field of end-to-end autonomous driving technology, emphasizing the need for a comprehensive understanding of various algorithms and models to succeed in this competitive industry [2][4][6]. Group 1: Industry Trends - The shift from modular approaches to end-to-end systems in autonomous driving aims to eliminate cumulative errors between modules, marking a significant technological leap [2]. - The emergence of various algorithms and models, such as UniAD and BEV perception, indicates a growing focus on integrating multiple tasks into a unified framework [4][9]. - The demand for knowledge in multi-modal large models, reinforcement learning, and diffusion models is increasing, reflecting the industry's need for versatile skill sets [5][20]. Group 2: Learning Challenges - New entrants face difficulties due to the fragmented nature of knowledge and the overwhelming volume of research papers in the field, often leading to early abandonment of learning [5][6]. - The lack of high-quality documentation and practical guidance further complicates the transition from theory to practice in end-to-end autonomous driving research [5][6]. Group 3: Course Offerings - A new course titled "End-to-End and VLA Autonomous Driving" has been developed to address the learning challenges, focusing on practical applications and theoretical foundations [6][24]. - The course is structured to provide a comprehensive understanding of end-to-end algorithms, including their historical development and current trends [11][12]. - Practical components, such as real-world projects and assignments, are included to ensure that participants can apply their knowledge effectively [8][21]. Group 4: Course Content Overview - The course covers various topics, including the introduction to end-to-end algorithms, background knowledge on relevant technologies, and detailed explorations of both one-stage and two-stage end-to-end methods [11][12][13]. - Specific chapters focus on advanced topics like world models and diffusion models, which are crucial for understanding the latest advancements in autonomous driving [15][17][20]. - The final project involves practical applications of reinforcement learning from human feedback (RLHF), allowing participants to gain hands-on experience [21].
端到端VLA的起点:聊聊大语言模型和CLIP~
自动驾驶之心· 2025-08-19 07:20
Core Viewpoint - The article discusses the development and significance of end-to-end (E2E) algorithms in autonomous driving, emphasizing the integration of various advanced technologies such as large language models (LLMs), diffusion models, and reinforcement learning (RL) in enhancing the capabilities of autonomous systems [21][31]. Summary by Sections Section 1: Overview of End-to-End Autonomous Driving - The first chapter provides a comprehensive overview of the evolution of end-to-end algorithms, explaining the transition from modular approaches to end-to-end solutions, and discussing the advantages and challenges of different paradigms [40]. Section 2: Background Knowledge - The second chapter focuses on the technical stack associated with end-to-end systems, detailing the importance of LLMs, diffusion models, and reinforcement learning, which are crucial for understanding the future job market in this field [41][42]. Section 3: Two-Stage End-to-End Systems - The third chapter delves into two-stage end-to-end systems, exploring their emergence, advantages, and disadvantages, while also reviewing notable works in the field such as PLUTO and CarPlanner [42][43]. Section 4: One-Stage End-to-End and VLA - The fourth chapter highlights one-stage end-to-end systems, discussing various subfields including perception-based methods and the latest advancements in VLA (Vision-Language Alignment), which are pivotal for achieving the ultimate goals of autonomous driving [44][50]. Section 5: Practical Application and RLHF Fine-Tuning - The fifth chapter includes a major project focused on RLHF (Reinforcement Learning from Human Feedback) fine-tuning, providing practical insights into building pre-training and reinforcement learning modules, which are applicable to VLA-related algorithms [52]. Course Structure and Learning Outcomes - The course aims to equip participants with a solid understanding of end-to-end autonomous driving technologies, covering essential frameworks and methodologies, and preparing them for roles in the industry [56][57].