World Model
Search documents
Google Genie 3 - The Most Advanced World Simulator Ever...
Matthew Berman· 2025-08-05 14:02
Model Overview - Google announced Genie 3, a general-purpose world model for generating diverse interactive environments [1][8] - Genie 3 allows real-time interaction with improved consistency and realism compared to Genie 2 [12] - The model generates 720p high-quality environments [3] Technical Aspects - Genie 3 considers the entire previously generated trajectory, not just the previous frame, for autoregressive generation [15] - Consistency in Genie 3 is an emergent capability resulting from training scale, not pre-programming [19] - Genie 3 generates dynamic and rich worlds frame by frame based on world description and user actions, unlike methods relying on explicit 3D representation [20] Potential Applications - World models like Genie 3 can be used for training robots and agents [9] - The technology has potential applications in creating video games, movies, and television shows [9] - Google positions world models as a key step towards AGI by providing AI agents with unlimited simulation environments for training [9][10] Comparison with Previous Models - Genie 3 demonstrates significant improvements in consistency, detail, and generation length compared to Genie 2 [22][23] - Genie 3 allows for deeper world exploration than Genie 2 [23] Interactive Features - Users can prompt events in real-time, adding elements to the scene [21] - The model demonstrates realistic interactions, such as light moving out of the way of a jet ski and reflections in mirrors [6] - The model can simulate actions like painting, with paint only being applied when the brush touches the wall [29][30]
CAAI具身智能专委会主任蒋树强:世界模型是智能体进行决策的重要依据
机器人圈· 2025-08-04 11:38
Core Viewpoint - The core discussion revolves around the concept of embodied intelligence, emphasizing the intricate relationship between body, environment, and intelligence, and how these elements collectively contribute to the realization of intelligent systems [4]. Group 1: Embodied Intelligence - Embodied intelligence is defined by three key elements: body, environment, and intelligence, which interact in complex ways to enable intelligent behavior [4]. - The structure and sensory capabilities of the body significantly influence how an intelligent agent perceives and interacts with the world, highlighting the importance of physical attributes such as height and limb structure [4]. Group 2: Large Models in Embodied Intelligence - The training of embodied large models requires the integration of visual, linguistic, and behavioral data, necessitating a unified approach to data, computing power, and algorithms [4]. - The complexity of data in training embodied large models is heightened as it must encompass multimodal information, including behavior, physical parameters, and tactile data [4]. - Challenges remain in the generalization capabilities of embodied large models in real physical spaces, particularly concerning data complexity and sensor differences [4]. Group 3: World Models - World models serve as abstract representations of the real world, encompassing three-dimensional space, dynamic changes, object relationships, and memory, which are crucial for understanding and predicting environmental states [5]. - The relationship between world models and large models, as well as their connection to three-dimensional spaces, presents areas for further exploration [5]. - Current research often relies on simulators to generate data, but aligning virtual environments with real-world physical parameters remains a significant challenge [5].
Meta chief AI scientist Yann LeCun clarifies his role after the company hires another chief AI scientist
Business Insider· 2025-07-26 19:50
Core Insights - Meta has appointed Shengjia Zhao, co-creator of ChatGPT and former lead scientist at OpenAI, as the chief scientist at its Superintelligence Labs, indicating a strategic move in the AI talent acquisition landscape [1][2]. Group 1: Leadership and Structure - Shengjia Zhao will set the research agenda and scientific direction for Meta's Superintelligence Labs, working closely with CEO Mark Zuckerberg and Chief AI Officer Alexandr Wang [2]. - The formalization of Zhao's leadership role comes as Meta reports successful recruitment efforts and team assembly [2]. - Yann LeCun, who has been with Meta since 2013 and serves as the chief AI scientist for Meta's Fundamental AI Research (FAIR), clarified that his role remains unchanged despite Zhao's appointment [3]. Group 2: Research Focus - Meta's FAIR, established over a decade ago, focuses on advancing AI technology, leading to the release of the open-source large language model, Llama, in 2023 [8]. - The Superintelligence Labs will encompass FAIR and other teams, aiming to develop "personal superintelligence for everyone," as stated by Zuckerberg [9]. - LeCun is currently focused on developing a new model type, known as a world model, which could potentially replace large language models [8]. Group 3: Collaboration and Future Directions - Zhao's expertise in pioneering new scaling paradigms in AI research is expected to guide the scientific direction of Meta's AI initiatives [10]. - LeCun expressed enthusiasm about collaborating with Zhao to enhance the integration of new research into Meta's advanced models [10].
一边是毕业等于失业,一边是企业招不到人,太难了。。。
自动驾驶之心· 2025-07-23 09:56
Core Insights - The automatic driving industry is experiencing a paradox where job openings are abundant, yet companies struggle to find suitable talent. This is attributed to a shift in market expectations and a focus on sustainable business models rather than rapid expansion [2][3]. Industry Overview - Companies in the automatic driving sector are now more cautious with their spending, prioritizing survival and the establishment of viable business models over aggressive hiring and expansion strategies. This shift is expected to lead to significant industry adjustments within the next 1-3 years [2][3]. Talent Demand - There is an unprecedented demand for "top talent" and "highly compatible talent" in the automatic driving field. Companies are not necessarily unwilling to hire, but they are looking for candidates with exceptional skills and relevant experience [4][3]. Community and Resources - The "Automatic Driving Heart Knowledge Planet" is the largest community focused on automatic driving technology in China, established to provide resources and networking opportunities for professionals in the field. It has nearly 4000 members and over 100 industry experts contributing to discussions and knowledge sharing [9][10]. Learning and Development - The community offers comprehensive learning pathways covering various subfields of automatic driving technology, including perception, mapping, and AI model deployment. This initiative aims to support both newcomers and experienced professionals in enhancing their skills [9][12][13]. Job Placement Support - The community has established a direct referral mechanism with numerous automatic driving companies, facilitating job placements for members. This service aims to streamline the hiring process and connect qualified candidates with potential employers [10][9].
自动驾驶论文速递 | 世界模型、端到端、VLM/VLA、强化学习等~
自动驾驶之心· 2025-07-21 04:14
Core Insights - The article discusses advancements in autonomous driving technology, particularly focusing on the Orbis model developed by Freiburg University, which significantly improves long-horizon prediction in driving world models [1][2]. Group 1: Orbis Model Contributions - The Orbis model addresses shortcomings in contemporary driving world models regarding long-horizon generation, particularly in complex maneuvers like turns, and introduces a trajectory distribution-based evaluation metric to quantify these issues [2]. - It employs a hybrid discrete-continuous tokenizer that allows for fair comparisons between discrete and continuous prediction methods, demonstrating that continuous modeling (based on flow matching) outperforms discrete modeling (based on masked generation) in long-horizon predictions [2]. - The model achieves state-of-the-art (SOTA) performance with only 469 million parameters and 280 hours of monocular video data, excelling in complex driving scenarios such as turns and urban traffic [2]. Group 2: Experimental Results - The Orbis model achieved a Fréchet Video Distance (FVD) of 132.25 on the nuPlan dataset for 6-second rollouts, significantly lower than other models like Cosmos (291.80) and Vista (323.37), indicating superior performance in trajectory prediction [6][7]. - In turn scenarios, Orbis also outperformed other models, achieving a FVD of 231.88 compared to 316.99 for Cosmos and 413.61 for Vista, showcasing its effectiveness in challenging driving conditions [6][7]. Group 3: LaViPlan Framework - The LaViPlan framework, developed by ETRI, utilizes reinforcement learning with verifiable rewards to address the misalignment between visual, language, and action components in autonomous driving, achieving a 19.91% reduction in Average Displacement Error (ADE) for easy scenarios and 14.67% for hard scenarios on the ROADWork dataset [12][14]. - It emphasizes the transition from linguistic fidelity to functional accuracy in trajectory outputs, revealing a trade-off between semantic similarity and task-specific reasoning [14]. Group 4: World Model-Based Scene Generation - The University of Macau introduced a world model-driven scene generation framework that enhances dynamic graph convolution networks, achieving an 83.2% Average Precision (AP) and a 3.99 seconds mean Time to Anticipate (mTTA) on the DAD dataset, marking significant improvements [23][24]. - This framework combines scene generation with adaptive temporal reasoning to create high-resolution driving scenarios, addressing data scarcity and modeling limitations [24]. Group 5: ReAL-AD Framework - The ReAL-AD framework proposed by Shanghai University of Science and Technology and the Chinese University of Hong Kong integrates a three-layer human cognitive decision-making model into end-to-end autonomous driving, improving planning accuracy by 33% and reducing collision rates by 32% [33][34]. - It features three core modules that enhance situational awareness and structured reasoning, leading to significant improvements in trajectory planning accuracy and safety [34].
L4产业链跟踪系列第三期-头部Robotaxi公司近况跟踪(技术方向)
2025-07-16 06:13
Summary of Conference Call Company and Industry - The conference call primarily discusses advancements in the autonomous driving industry, specifically focusing on a company involved in Level 4 (L4) autonomous driving technology. Key Points and Arguments 1. **Technological Framework**: The company has a modular architecture for its autonomous driving system, which includes perception, prediction, control, and planning. This framework has evolved to incorporate advanced techniques like reinforcement learning and world models, although the core structure remains intact [1][2][3]. 2. **Transition to Large Models**: The industry is shifting from CNN architectures to transformer-based models. The company is gradually replacing its existing models with these new frameworks, which may take longer due to the high baseline performance of their current systems [3][4]. 3. **Data Utilization**: The company emphasizes the importance of both real and simulated data for model training. While real data is primarily used, there is a plan to increasingly incorporate simulated data to address data shortages, especially for control models [8][9][10]. 4. **Learning Techniques**: Imitation learning has been used for scenarios where rule-based approaches fail, while reinforcement learning is applied in end-to-end (E2E) models. The proportion of reinforcement learning used is not significant, indicating a cautious approach to its implementation [11][12]. 5. **Operational Deployment**: The company has deployed several autonomous vehicles in major cities like Beijing and Guangzhou, with plans to expand in Shenzhen and Shanghai. The current fleet consists of a few hundred vehicles [14][21]. 6. **Cost Structure**: The cost of vehicles includes hardware components such as multiple radars and cameras, with estimates suggesting that the total cost could be reduced to around 200,000 yuan [15][19]. 7. **Computational Resources**: The company is facing challenges with computational capacity, particularly with the integration of various models across different chips. There is a focus on optimizing the use of existing resources while planning for future upgrades [19][20]. 8. **Profitability Goals**: The company aims to achieve a break-even point by deploying a fleet of over 10,000 vehicles by 2027 or 2028. Current estimates suggest that achieving profitability may require a fleet size closer to 100,000 vehicles [26]. 9. **Market Positioning**: The company acknowledges competition from other players in the autonomous driving space, particularly in terms of regulatory approvals and operational capabilities. It aims to maintain a competitive edge by leveraging its faster acquisition of commercial licenses [27][28]. Other Important Content - The discussion highlights the ongoing evolution of the autonomous driving technology landscape, with a focus on the balance between technological advancement and operational scalability. The company is committed to addressing challenges in data acquisition, model training, and fleet management to enhance its market position [22][23][30].
双非研究生,今年找工作有些迷茫。。。
自动驾驶之心· 2025-07-14 14:04
Core Viewpoint - The article emphasizes the importance of staying updated with cutting-edge technologies in the fields of autonomous driving and embodied intelligence, highlighting the need for strong technical skills and knowledge in advanced areas such as large models, reinforcement learning, and 3D graphics [4][5]. Group 1: Industry Trends - There is a growing demand for talent in the fields of robotics and embodied intelligence, with many startups receiving significant funding and showing rapid growth potential [4][5]. - Major companies are shifting their focus towards more advanced technologies, moving from traditional methods to end-to-end solutions and large models, indicating a technological evolution in the industry [4][5]. - The community aims to build a comprehensive ecosystem that connects academia, products, and recruitment, fostering a collaborative environment for knowledge sharing and job opportunities [6]. Group 2: Technical Directions - The article outlines four key technical directions in the industry: visual large language models, world models, diffusion models, and end-to-end autonomous driving [9]. - It provides resources and summaries of various research papers and datasets related to these technologies, indicating a strong emphasis on research and development [10][17][18][19][20][21][22][23][24][25][26][27][28][29][30][31][32][35][36][38]. Group 3: Community and Learning Resources - The community offers a variety of learning materials, including video courses, hardware, and coding resources, aimed at equipping individuals with the necessary skills for the evolving job market [6]. - There is a focus on creating a supportive environment for discussions on the latest industry trends, technical challenges, and job opportunities, which is crucial for professionals looking to advance their careers [6].
4000人的自动驾驶黄埔军校,死磕技术分享与求职交流~
自动驾驶之心· 2025-07-12 14:43
Core Viewpoint - The smart driving industry is experiencing significant growth, with companies willing to invest heavily in research and talent acquisition, indicating a robust job market and opportunities for new entrants [2][3]. Group 1: Industry Trends - The smart driving sector continues to attract substantial funding for research and development, with companies offering competitive salaries to attract talent [2]. - There is a noticeable trend of shorter technology iteration cycles in the autonomous driving field, with a focus on advanced technologies such as visual large language models (VLA) and end-to-end systems [7][11]. Group 2: Community and Learning Resources - The "Autonomous Driving Heart Knowledge Planet" aims to create a comprehensive community for knowledge sharing, focusing on academic and engineering challenges in the autonomous driving industry [3][11]. - The community has established a structured learning path covering various aspects of autonomous driving technology, including perception, planning, and control [13][15]. Group 3: Educational Offerings - The community offers a range of educational resources, including video courses, hardware tutorials, and live sessions with industry experts, aimed at both newcomers and experienced professionals [3][15]. - There are dedicated modules for job preparation, including resume sharing and interview experiences, to help members navigate the job market effectively [5][12]. Group 4: Technical Focus Areas - Key technical areas of focus include visual language models, world models, and end-to-end autonomous driving systems, with ongoing discussions about their integration and application in real-world scenarios [11][36]. - The community emphasizes the importance of understanding the latest advancements in algorithms and models, such as diffusion models and generative techniques, for future developments in autonomous driving [16][36].
李飞飞:高校学生应追逐AI“北极星”问题
Hu Xiu· 2025-07-08 08:15
Core Insights - The article highlights the journey of Fei-Fei Li from her early academic achievements to her current role as CEO of a company, emphasizing her passion for starting from scratch and building innovative solutions in AI [1][2][24]. Group 1: ImageNet and AI Development - ImageNet was conceived around 18 years ago to address the lack of data in AI and machine learning, particularly in computer vision, which was essential for the development of algorithms [4][6]. - The project aimed to download 1 billion images from the internet to create a global visual classification system, which became a cornerstone for training and testing machine learning algorithms [6][7]. - The breakthrough moment for ImageNet came in 2012 with the introduction of AlexNet, which utilized convolutional neural networks (CNN) and significantly reduced the error rate in image recognition tasks [8][10]. Group 2: Vision and Future of AI - Li emphasizes the importance of spatial intelligence for achieving general artificial intelligence (AGI), arguing that without it, AGI remains incomplete [14]. - The evolution of AI has progressed from object recognition to scene understanding and now to generating 3D worlds, which presents a new set of challenges [12][16]. - The integration of language models and visual understanding is seen as a critical area for future research and application, particularly in fields like robotics and the metaverse [20][21]. Group 3: Advice for Students and Researchers - Li advises students to pursue fundamental "North Star" problems in AI that are not necessarily tied to industrial applications, as academic resources have shifted significantly [34][35]. - She encourages interdisciplinary research in AI, particularly in scientific discovery, and highlights the importance of curiosity and problem-solving in graduate studies [38][39]. - The article underscores the need for a new generation of researchers who are fearless and willing to tackle complex challenges in AI [32][33].
2025秋招开始了,这一段时间有些迷茫。。。
自动驾驶之心· 2025-07-08 07:53
Core Viewpoint - The article discusses the current trends and opportunities in the fields of autonomous driving and embodied intelligence, emphasizing the need for strong technical skills and knowledge in cutting-edge technologies for job seekers in these areas [3][4]. Group 1: Job Market Insights - The job market for autonomous driving and embodied intelligence is competitive, with a high demand for candidates with strong backgrounds and technical skills [2][3]. - Companies are increasingly looking for expertise in advanced areas such as end-to-end models, visual language models (VLM), and reinforcement learning [3][4]. - There is a saturation of talent in traditional robotics, but many startups in the robotics sector are rapidly growing and attracting significant funding [3][4]. Group 2: Learning and Development - The article encourages individuals to enhance their technical skills, particularly in areas like SLAM (Simultaneous Localization and Mapping) and ROS (Robot Operating System), which are relevant to robotics and embodied intelligence [3][4]. - A community platform is mentioned that offers resources such as video courses, hardware learning materials, and job information, aiming to build a large network of professionals in intelligent driving and embodied intelligence [5]. Group 3: Technical Trends - The article highlights four major technical directions in the industry: visual language models, world models, diffusion models, and end-to-end autonomous driving [8]. - It provides links to various resources and papers related to these technologies, indicating a focus on the latest advancements and applications in the field [9][10].