Workflow
可信AI
icon
Search documents
从可用到可信,明略科技(2718.HK)如何定义下一代企业AI核心能力?
Xin Lang Cai Jing· 2026-01-09 04:20
Core Insights - The article emphasizes the transition from merely adopting AI to effectively utilizing it, predicting that by 2026, 5 billion people will use AI daily, highlighting its evolution into a core productivity driver [1][12]. Group 1: AI Adoption Challenges - Companies face significant challenges in AI implementation, including doubts about AI's value, with 37% of enterprises expressing skepticism despite projected spending growth [2]. - Key bottlenecks hindering AI's transition from experimentation to large-scale application include uncontrollable model outputs, unreliable data sources, and inadequate security mechanisms [2][3]. Group 2: Trustworthy AI Framework - Trustworthy AI is defined as the ability to meet stakeholder expectations in a verifiable manner, with a formula proposed: Trustworthy Productivity = Trustworthy Models + Trustworthy Data [4]. - Trustworthy models require not only technical capabilities but also the ability to systematically solve complex problems through trustworthy task planning [4][5]. Group 3: Importance of Trustworthy Data - Trustworthy data is crucial for achieving trustworthy AI, with its reliability ensured through identifying credible data sources and efficiently extracting necessary information [6][7]. - The authority of data sources and the reliability of data acquisition methods are often overlooked factors that significantly impact decision quality [8]. Group 4: Data Source System - The company has established a multi-tiered, high-standard trustworthy data source system, including access to over 1,000 authoritative institutions for macroeconomic and industry data [9]. - It also integrates professional third-party data and enterprise-specific data to provide a comprehensive view of business operations [10]. Group 5: Security and Collaboration Mechanisms - The company prioritizes architecture design over functional promises, ensuring that AI systems can be deployed in a controlled environment to maintain data security [11]. - In critical business decision scenarios, human experts retain final decision-making authority, with AI serving as an efficient execution assistant [11]. Group 6: Practical Applications and Future Outlook - Successful applications of AI have been demonstrated, such as a marketing agency increasing creative material effectiveness from 30% to 70% through predictive testing [12]. - As AI technology continues to permeate industries, the competition will shift from merely having AI to possessing superior AI capabilities, making trustworthy AI a critical component of digital transformation [12].
上海银行胡德斌:“本体论”破局大模型应用关键梗阻
21世纪经济报道记者 方海平 上海报道 当下,人人都对快速迭代的各类技术的巨大能量有了初体验,也深信其终将渗透并重塑经济和社会生活 的各个领域,在金融行业亦不例外。作为"金融五篇大文章"之一,金融机构尤其是银行对数字金融的重 视和投入似乎怎么强调都不为过。 如今银行业的数字化进程到了哪一步?大模型等新兴技术强势来袭,银行业有怎样的思考和顾虑?新的 数字化地基更新建成,下一步在技术应用上会有怎样的突破?对此,21世纪经济报道《对话数字金融30 人》高端访谈栏目近期专访了上海银行(601229)副行长、首席信息官胡德斌。 胡德斌拥有十分深厚的银行业数字化经历,拥有吉林大学软件工程博士学位。其职业生涯深度贯穿中国 银行业信息化与数字化历程,曾历任中国工商银行软件开发中心副总经理、数据中心(上海)副总经理 等关键职务。自2016年出任上海银行副行长,并于2021年兼任首席信息官以来,他主导推动了该行一系 列重大科技战略工程。 近期,上海银行历时27个月的"智芯工程"圆满收官,新一代全栈信创核心系统成功投产。该工程不仅实 现了从底层硬件到应用软件的全面自主可控,更依托腾讯云TDSQL数据库与TCE专有云平台,完成了 核 ...
两个月,两场IPO!有一种胜利,属于这一类创始人
混沌学园· 2026-01-07 11:56
2025年的最后两个月,混沌Black创新企业联盟的五家企业接连迎来 两场IPO 。 在对赌压顶、前路迷茫的时刻,两位创始人先后走进了混沌Black创新企业联盟。一年半后,他们各自带着一家上市公司走了出来。 一个月后,51WORLD的钟声在港交所响起,成为"Physical AI第一股",技术闭环+生态协同叩响万亿新赛道,市值超150亿港元。创始人李熠(混沌学园5期学 员)的"克隆地球"梦想,第一次在全球资本市场的目光中,变得如此真切。 按照"克隆地球计划",51WORLD通过16年(2015-2030)克隆地球5.1亿平方公里,以此不断解决真实世界中关于交通拥堵、AI训练、时空沉浸、安全预警、气候 预测、能源工业等应用领域的各种现实问题。到目前,公司已经集齐了地球克隆最基本的要素——"人与建筑"、"车与道路"、"水与城市",在19个国家拥有超过 1000家客户。 资本市场在2025年格外冷静,这两声钟响因此显得尤为珍贵。而只有真正了解内情的人才知道,这两家公司有一个更重要的共同点: 2024年初,他们都遇到巨大的危机。 先是11月,明略科技登陆港交所,成为全球Agentic AI(自主智能体)第一股。创始人 ...
给电力AI装上“安全闸”!首个智能体系统性测评体系发布,推动“可信AI”规模化落地
近日,冀北电科院发布"智序"电力智能体测评体系,为人工智能在电力行业的有序落地筑牢根基,推动 新型电力系统与智能电网建设迈向新高度。 随着国家"人工智能+"行动持续推进,新型电力系统加快建设,智能体作为人工智能技术的重要应用形 态,正逐步从实验探索走向电网核心业务场景。电力行业的AI应用具有高安全性、高可靠性特点,智 能体一旦参与运行和生产,其行为是否可控、决策是否稳定、结果是否可信,成为必须正面回答的现实 问题。 围绕智能体应用落地前的这一重要关口,冀北电科院立足电力行业实际,打造"智序"电力智能体测评体 系,面向智能体全生命周期构建系统化、工程化的测评方法,致力于以"可度量、可解释、可复现"的专 业评估手段,为电力智能体实现"可用、好用、放心用"提供支撑。 从行业视角看,"智序"电力智能体测评体系为智能体应用提供了一套可复用、可推广的测评范式,有助 于统一能力认知、降低应用风险、提升人工智能应用的可控性和规范性,为后续开展规模化应用和行业 协同奠定基础。 面向未来,冀北电科院将持续深化"智序"测评体系建设,推动其在更多电力业务场景中的实践应用,并 加强与国家人工智能测评与标准体系的协同衔接,不断提升电力智 ...
最鲁棒的MLLM,港科大开源「退化感知推理新范式」
3 6 Ke· 2025-12-24 07:47
这些在真实世界中无处不在的视觉退化,足以让最先进的GPT-4V、Qwen-VL等模型产生荒谬输出,成为其在自动驾驶、医疗影像、安防监控等关键领域 落地的「阿喀琉斯之踵」。 现有方法的根本困境在于「隐式适应」:通过对抗训练、数据增强等手段,试图让模型「硬扛」干扰。 这如同给模型戴上更厚的滤镜——治标不治本,且不可解释。模型在特定退化上表现提升,却无法理解退化本身,更无法泛化到未知干扰,其决策过程仍 是黑箱。 【导读】多模态大语言模型(MLLMs)已成为AI视觉理解的核心引擎,但其在真实世界视觉退化(模糊、噪声、遮挡等)下的性能崩溃,始终是制约产 业落地的致命瓶颈。近日,一篇被AAAI 2026接收为Oral的重磅论文Robust-R1,给出了革命性解法:来自香港科技大学、西北工业大学等团队首次跳出 「隐式适应」的思维定式,将视觉退化问题重构为显式结构化推理任务,让模型不仅「抗干扰」,更能「诊干扰」,在多项权威评测中实现质量与鲁棒性 的双重突破。 当多模态大模型(MLLMs)从实验室走向真实世界,它们遇到了一个致命瓶颈:视觉退化。 雨滴斑驳的车窗、年代久远的监控录像、网络压缩的低质图片、医疗影像的固有噪声…… 今 ...
清华博士做出可信AI ,对规范性知识的幻觉“零容忍”,获千万级投资
创业邦· 2025-12-05 11:15
以下文章来源于快鲤鱼 ,作者杨婧雪 快鲤鱼 . 创业邦旗下AGI矩阵号,寻找海内外创新性的AGI高成长公司,记录AGI商业领袖的成长轨迹。 作者丨杨婧雪 编辑丨刘恒涛 | | | 北京彩智科技有限公司-融资历程 | | | --- | --- | --- | --- | | 融资轮次 | 事件时间 | 融资金额 | 投资方 | | 天使轮 | 2024年11月 | 数千万人民币 | 智谱Al领投 | | | | | 盛景嘉成 | | A轮 | 2025年12月 | 数千万人民币 | 致远互联独家领投 | | | | | 数据来源: 睿兽分析 | 随着 AI 的不断发展,大模型在一些垂直的严肃工作场景落地越来越普遍。比如政务服务大模型、企 业客服大模型,这些严肃的场景,需要大模型对制度、章程的严谨、准确输出,对幻觉"零容忍"。但 目前市面上常见的大模型都是概率模型,尤其遇上章程知识, AI 幻觉更加严重。 但对政企办公来说,规章制度是基本守则。 AI 如果不能解决对规章制度的幻觉,就很难真正进入严 肃办公场景。 彩智科技 正在推进的深知可信知识模型, 针对的就是这一市场痛点。 瞄准规章领域痛点 打造零幻觉 AI ...
迎接2049:与AI共存的未来 | 两说
Di Yi Cai Jing Zi Xun· 2025-11-27 07:41
人工智能正以前所未有的速度重塑我们的世界:它让个体担忧职业的未来,让产业面临转型的阵痛,也 让全球格局步入新一轮科技竞争与协作的十字路口。当乐观成为迎接未来的必要选择,我们能否正视技 术回报"缓慢起飞"的发展周期,以人类命运共同体的愿景迈向AI技术跃迁的新纪元?本期《两说》邀请 美国《连线》杂志创始主编、未来学家凯文·凯利(Kevin Kelly)进行了一场深度对话,聆听其前瞻思 考。作为一位以洞察技术演化规律著称的科技预言家,凯文·凯利在节目中勾勒了一幅关乎趋势、周期 与文明的AI未来全景图。 乐观主义与聆听技术 塑造未来的理性工具 面对普遍的社会焦虑,凯文·凯利重新校准了"乐观"的含义。在他看来,乐观并非天真的期待或盲目的 信心,而是一种基于历史经验的、蓄意选择的理性工具。他指出,人类所有复杂的文明造物,从城市到 技术,最初都源于乐观者脑海中的蓝图。正是因为他们先"相信"其可能,才最终得以实现。 将此应用于AI,他认为讨论的起点应是客观证据。目前,数据显示AI直接导致的大规模失业并未发 生;长远来看,技术演进会如同计算机催生出"网页设计师"一样,创造大量前所未有的新职业。因此, 他的乐观主义哲学最终导向一 ...
迎接2049:与AI共存的未来 | 两说
第一财经· 2025-11-27 07:32
人工智能正以前所未有的速度重塑我们的世界:它让个体担忧职业的未来,让产业面临转型的 阵痛,也让全球格局步入新一轮科技竞争与协作的十字路口。当乐观成为迎接未来的必要选择,我 们能否正视技术回报"缓慢起飞"的发展周期,以人类命运共同体的愿景迈向AI技术跃迁的新纪元? 本期《两说》邀请美国《连线》杂志创始主编、未来学家凯文·凯利(Kevin Kelly)进行了一场深度 对话,聆听其前瞻思考。作为一位以洞察技术演化规律著称的科技预言家,凯文·凯利在节目中勾勒 了一幅关乎趋势、周期与文明的AI未来全景图。 乐观主义与聆听技术 塑造未来的理性工具 面对普遍的社会焦虑,凯文·凯利重新校准了"乐观"的含义。在他看来,乐观并非天真的期待或盲目的 信心,而是一种基于历史经验的、蓄意选择的理性工具。他指出,人类所有复杂的文明造物,从城市到技 术,最初都源于乐观者脑海中的蓝图。正是因为他们先"相信"其可能,才最终得以实现。 将此应用于AI,他认为讨论的起点应是客观证据。目前,数据显示AI直接导致的大规模失业并未发 生;长远来看,技术演进会如同计算机催生出"网页设计师"一样,创造大量前所未有的新职业。因此,他 的乐观主义哲学最终导向一 ...
AI改造最难啃的行业,万亿基建求解“效率”与“可信”
Core Insights - The global infrastructure industry is at a transformative crossroads, with projected construction spending reaching $10 trillion by 2025, yet productivity has seen little improvement over decades. AI is viewed as a key opportunity to bridge the supply-demand gap in infrastructure [1][4] - AI is increasingly integrated into various stages of infrastructure projects, enhancing efficiency and decision-making, but its adoption faces significant challenges due to the industry's complexity and high stakes [1][8] Group 1: AI Integration and Impact - Approximately half of the respondents in a global survey have piloted or implemented AI in infrastructure, with one-third predicting AI will be applied to over half of their design and engineering projects within three years [4] - AI has demonstrated substantial efficiency improvements, with examples including a Chinese engineering company achieving over 60% operational efficiency in substations and a Turkish project reducing development time from five years to one year while cutting costs by over 75% [4][9] - Bentley's AI strategy emphasizes "trustworthy AI," focusing on specialized intelligence rooted in infrastructure scenarios, utilizing real project data and geographic information [7][8] Group 2: Challenges in AI Adoption - Data silos present a significant challenge, as infrastructure projects involve multiple phases and data formats, necessitating a unified data foundation to facilitate seamless data flow [8][9] - The rigorous engineering logic must be embedded in AI to ensure compliance with safety and construction standards, as any deviation could lead to unsafe outcomes [8][9] - The complexity of adapting AI to various geographical and climatic conditions poses a third challenge, requiring tailored solutions for different project environments [9][10] Group 3: Future Directions - Bentley's "Infrastructure AI Co-Creation Program" aims to involve users in the design of AI workflows, enhancing software optimization through user feedback [10] - The vision for AI in the infrastructure sector is not to replace engineers but to empower them, fostering a collaborative human-machine process [11]
善友探索流 01|从天才到归真:吴明辉的“悟道”之路
混沌学园· 2025-10-30 11:22
Core Viewpoint - The article highlights the journey of Wu Minghui, the founder of Minglue Technology, emphasizing his technical background, entrepreneurial challenges, and the evolution of his company towards AI-driven solutions, particularly focusing on trust and data credibility in business decision-making. Group 1: Entrepreneurial Journey - Wu Minghui is portrayed as a typical "scholar-type" entrepreneur with a strong technical background, having excelled in mathematics and computer science [1][7] - The company experienced significant ups and downs, including a dramatic downturn where it struggled to pay severance to employees, leading to negative public perception [1][39][46] - After nearly two decades of exploration in the business world, Wu has focused on the core question of what constitutes trustworthy data [3][24] Group 2: Product Development and Innovation - Minglue Technology recently launched the multi-modal foundational model web GUI intelligent agent, Mano, which achieved state-of-the-art performance in international benchmarks [1][2] - The proprietary large model product line, DeepMiner, aims to address the challenge of making AI agents trustworthy, explainable, and traceable in enterprise decision-making [2][68] - DeepMiner is designed to connect credible data sources, enabling businesses to make informed decisions based on reliable data analysis [68][69] Group 3: Strategic Insights and Reflections - Wu reflects on the importance of trust in data and the need for AI to act as a gatekeeper in business decisions [4][66] - The article discusses the strategic errors made during the company's rapid expansion, emphasizing the need for a controlled strategic pace [50][51] - Wu acknowledges the lessons learned from past failures, particularly the necessity of aligning team goals and maintaining trust within the organization [54][57]