孪生素数猜想

Search documents
“半路截胡”张益唐,北大出身的中山大学校长这样做
量子位· 2025-08-21 07:15
一水 发自 凹非寺 量子位 | 公众号 QbitAI 原来数学家张益唐加盟中大并非"一蹴而就",这里头竟然还有被截胡的事儿! 消息还是由张益唐本人亲口透露的。 事情是这样的。 今年6月,在阔别祖国学术圈四十余年之后,知名数学家张益唐最终"花落"中山大学,出任中大去年刚揭牌成立的 香港高等研究院首席科学家 ,举家定居粤港澳大湾区。 在这之前,他是美国加州大学圣塔芭芭拉分校数学系终身教授, 曾因实质性推进解决数论难题"孪生素数猜想"而享誉世界 。 据其本人在凤凰卫视《问答神州》的最新采访中透露,最近几年他一直有想着回国,尤其是近一两年,因为一些众所周知的国际原因,身边很 多在美华人学者教授都已经回来了 (没有回来的也正在考虑) 。 而在接触的所有选择中,中山大学实则是"半路杀出",本人原话是这样的: 有其他一些学校,基本上都已经定了,中大好像是从中间又插进来的。 不过说完这话,他也提到了自己和中大的缘分—— 十年前,他和原北大副校长(现中大校长)高松共同参加了北大毕业典礼,当时对方的一些话 (在主持时引用张的话勉励学生) 给他留下了 深刻印象 (张益唐本硕皆学于北大) 。 △ 图源:中大官微(左高松,右张益唐) ...
陶哲轩罕见长长长长长访谈:数学、AI和给年轻人的建议
量子位· 2025-06-21 03:57
Group 1 - The core viewpoint of the article is that AI is reshaping human scientific paradigms, and while it will become an important partner in exploring ultimate questions in mathematics and physics, it cannot replace human intuition and creativity [2][3]. - Terence Tao discusses the importance of collaboration in creating superior intelligent systems, suggesting that a collective human community is more likely to achieve breakthroughs in mathematics than individual mathematicians [3]. - The article highlights Tao's insights on various world-class mathematical problems, including the Kakeya conjecture and the Navier-Stokes regularity problem, emphasizing the interconnectedness of these problems with other mathematical fields [4][16]. Group 2 - Tao emphasizes that in undergraduate education, students encounter difficult problems like the Riemann hypothesis and twin prime conjecture, but the real challenge lies in solving the remaining 10% of the problem after existing techniques have addressed 90% [5]. - The Kakeya problem, which Tao has focused on, involves determining the minimum area required for a needle to change direction in a plane, illustrating the complexity and depth of mathematical inquiry [6][7]. - The article discusses the implications of the Kakeya conjecture and its connections to partial differential equations, number theory, geometry, topology, and combinatorics, showcasing the rich interrelations within mathematics [10][14]. Group 3 - The Navier-Stokes regularity problem is presented as a significant unsolved issue in fluid dynamics, questioning whether a smooth initial velocity field can lead to singularities in fluid flow [16][18]. - Tao explains the challenges in proving general conclusions for the Navier-Stokes equations, using the example of Maxwell's demon to illustrate statistical impossibilities in fluid dynamics [19][20]. - The article notes that understanding the Kakeya conjecture can aid in comprehending wave concentration issues, which may indirectly enhance the understanding of the Navier-Stokes problem [18][26]. Group 4 - Tao discusses the concept of self-similar explosions in fluid dynamics, where energy can be concentrated in smaller scales, leading to potential singularities in the Navier-Stokes equations [22][24]. - The article highlights the mathematical exploration of how energy can be manipulated within fluid systems, suggesting that controlling energy transfer could lead to significant breakthroughs in understanding fluid behavior [26][30]. - Tao's work aims to bridge the gap between theoretical mathematics and practical applications, indicating a future where AI could play a role in experimental mathematics [55][56].