Workflow
费马大定理
icon
Search documents
院士南疆开讲,激励边疆学子种下科学种子
Nan Fang Nong Cun Bao· 2025-06-30 14:36
院士南疆开讲, 激励边疆学子种 下科学种子_南 方+_南方plus 2025年6月,"科 学与中国"暨广 东科普南疆行系 列活动在新疆喀 什地区和兵团第 三师举行,由中 国科学院院士领 衔、6位国内顶 尖科学家组成 的"科普天团"深 入新疆多所中小 学校园,用13场 精彩科普讲座, 为10000多名南 疆学子打开了一 扇通往科学世界 的大门。 本次系列活动旨 在深入贯彻落实 习近平总书记关 于科普工作的重 要论述、给"科 学与中国"院士 专家代表重要回 信精神,积极响 应第九次全国对 口支援新疆工作 会议精神,落实 粤新两省区援疆 工作部署,以高 质量科普助力区 域协调发展。 院士领航,开启 科学探索之旅 在塔什库尔干塔 吉克自治县深塔 中学,中国科学 院院士、中国科 学院国家天文台 研究员武向平, 以"理解宇宙-机 遇与挑战"主题 的科普讲座开启 了系列活动的序 幕。 中国科学院院士、中国科学院国家天文台研究员武向平揭开宇宙的奥秘。 作为天体物理学 领域的权威,武 向平结合其深厚 的学术造诣和丰 富的科研经验, 通过精美图片及 生动讲解,带领 学生们回溯宇宙 的起源。各类天 体的形成与特 点、当下备受关 注 ...
陶哲轩罕见长长长长长访谈:数学、AI和给年轻人的建议
量子位· 2025-06-21 03:57
Group 1 - The core viewpoint of the article is that AI is reshaping human scientific paradigms, and while it will become an important partner in exploring ultimate questions in mathematics and physics, it cannot replace human intuition and creativity [2][3]. - Terence Tao discusses the importance of collaboration in creating superior intelligent systems, suggesting that a collective human community is more likely to achieve breakthroughs in mathematics than individual mathematicians [3]. - The article highlights Tao's insights on various world-class mathematical problems, including the Kakeya conjecture and the Navier-Stokes regularity problem, emphasizing the interconnectedness of these problems with other mathematical fields [4][16]. Group 2 - Tao emphasizes that in undergraduate education, students encounter difficult problems like the Riemann hypothesis and twin prime conjecture, but the real challenge lies in solving the remaining 10% of the problem after existing techniques have addressed 90% [5]. - The Kakeya problem, which Tao has focused on, involves determining the minimum area required for a needle to change direction in a plane, illustrating the complexity and depth of mathematical inquiry [6][7]. - The article discusses the implications of the Kakeya conjecture and its connections to partial differential equations, number theory, geometry, topology, and combinatorics, showcasing the rich interrelations within mathematics [10][14]. Group 3 - The Navier-Stokes regularity problem is presented as a significant unsolved issue in fluid dynamics, questioning whether a smooth initial velocity field can lead to singularities in fluid flow [16][18]. - Tao explains the challenges in proving general conclusions for the Navier-Stokes equations, using the example of Maxwell's demon to illustrate statistical impossibilities in fluid dynamics [19][20]. - The article notes that understanding the Kakeya conjecture can aid in comprehending wave concentration issues, which may indirectly enhance the understanding of the Navier-Stokes problem [18][26]. Group 4 - Tao discusses the concept of self-similar explosions in fluid dynamics, where energy can be concentrated in smaller scales, leading to potential singularities in the Navier-Stokes equations [22][24]. - The article highlights the mathematical exploration of how energy can be manipulated within fluid systems, suggesting that controlling energy transfer could lead to significant breakthroughs in understanding fluid behavior [26][30]. - Tao's work aims to bridge the gap between theoretical mathematics and practical applications, indicating a future where AI could play a role in experimental mathematics [55][56].
数学宇宙二维破壁成功!四人组230页证明阿贝尔曲面镜像通道,大一统要实现了?
机器之心· 2025-06-08 03:45
最近,数学界再次掀起风浪,这条「地下通道」竟然迎来了 pro max 版升级。四位数学家将这种对应关系,从一维的椭圆曲线,延伸到了结构复杂得多的 高维对象——「阿贝尔曲面」上。 这一飞跃意义非凡,它朝着实现数学领域的「大一统理论」(即朗兰兹纲领)迈出了革命性的一步,为解决更多悬而未决的数论难题提供了前所未有的强大 工具。 让我们一起跟随量子杂志的脚步,开启这场奇妙的数学之旅。 从费马大定理到数学统一之梦 选自quantamagazine 作者: Joseph Howlett 机器之心编译 三百多年前,数学家费马在书页边缘留下了一个看似简单却困扰了学者几个世纪的难题——费马大定理。 1994 年,Andrew Wiles 的实际性证明为这个传奇故事画上了句号。然而,故事并未就此结束。 那场伟大证明的真正遗产,并非仅仅是攻克了一道难题,而是揭示了不同数学世界之间一条深刻的「地下通道」——模块化定理。这个定理证明了相对简单 的「椭圆曲线」总能与一种叫做「模形式」的对象一一对应。 1994 年,数学界发生了一场「大地震」。 数学家 Andrew Wiles 终于攻克了费马大定理 (Fermat's Last Theo ...