机械可解释性

Search documents
AI大佬教你如何中顶会:写论文也要关注「叙事」
量子位· 2025-05-13 07:11
Core Viewpoint - The article discusses a guide by Neel Nanda from Google DeepMind on how to write high-quality machine learning papers, emphasizing the importance of clarity, narrative, and evidence in research writing [2][3][7]. Group 1: Writing Essentials - The essence of an ideal paper lies in its narrative, which should tell a concise, rigorous, evidence-based technical story that includes key points of interest for the reader [8]. - Papers should compress research into core claims supported by rigorous empirical evidence, while also clarifying the motivation, problems, and impacts of the research [11]. Group 2: Key Writing Elements - Constructing a narrative involves distilling interesting, important, and unique results into 1-3 specific novel claims that form a coherent theme [13]. - Timing in writing is crucial; researchers should list their findings, assess their evidential strength, and focus on the highlights before entering the writing phase [14]. - Novelty should be highlighted by clearly stating how the results expand knowledge boundaries and differentiating from previous work [15]. - Providing rigorous evidence is essential, requiring experiments that can distinguish hypotheses and maintain reliability, low noise, and statistical rigor [16]. Group 3: Paper Structure - The abstract should spark interest, succinctly present core claims and research impact, and explain key claims and their basis [18]. - The introduction should outline the research background, key contributions, core evidence, and significance in a list format [26]. - The main body should cover background, methods, and results, explaining relevant terms and detailing experimental methods and outcomes [26]. - The discussion should address research limitations and explore broader implications and future directions [26]. Group 4: Writing Process and Common Issues - The writing process should begin with compressing research content to clarify core claims, motivations, and key evidence, followed by iterative expansion [22]. - Common issues include excessive focus on publication, overly complex content, and neglecting the writing process; solutions involve prioritizing research, using clear language, and managing time effectively [24].
Anthropic重磅研究:70万对话揭示AI助手如何做出道德选择
3 6 Ke· 2025-04-22 08:36
由前OpenAI员工创立的人工智能公司Anthropic,开展了一项史无前例的分析,探究其人工智能助手Claude在与用户的实际对话中是如何表达价值观的, 如今该公司揭开了这项分析的神秘面纱。 近日发布的这项研究成果,既展现了Claude与公司目标的一致性,也揭示了一些值得关注的极端案例,这些案例有助于发现人工智能安全措施方面的漏 洞。 这项研究审视了70万段经过匿名处理的对话,结果发现,Claude在很大程度上遵循了公司"有益、诚实、无害"的原则,同时还能根据不同的情境来调整自 身的价值观,这些情境涵盖了从提供情感关系建议到进行历史分析等各个方面。 这是一次极其大胆的尝试,通过实证来评估一个AI系统在实际应用中的行为是否与其预期设计相符。 参与这项研究的Anthropic社会影响团队成员Saffron Huang在接受VentureBeat采访时表示:"我们希望这项研究能鼓励其他人工智能实验室对其模型的价值 观展开类似的研究。衡量一个人工智能系统的价值观是对齐研究的核心,也有助于了解一个模型是否真的与它的训练目标相一致。" 01.AI助手的首个全面道德分类体系 研究团队开发出了一种全新的评估方法,用以系统地 ...