空间推理

Search documents
NeurIPS 2025 | SURDS 数据集与 GRPO 全面强化自驾空间推理
自动驾驶之心· 2025-09-27 23:33
以下文章来源于深蓝AI ,作者深蓝学院 深蓝AI . 专注于人工智能、机器人与自动驾驶的学习平台。 作者 | 深蓝学院 来源 | 深蓝AI 点击下方 卡片 ,关注" 自动驾驶之心 "公众号 戳我-> 领取 自动驾驶近30个 方向 学习 路线 >>自动驾驶前沿信息获取 → 自动驾驶之心知识星球 本文只做学术分享,如有侵权,联系删文 摘 要 在大模型飞速发展的当下,让多模态大语言模型(VLM)在自动驾驶场景图像中做出准确的空间推理,依然是人工智能领域的一大挑战。学术界一直缺 乏针对自动驾驶场推理的大规模基准,现有方法往往依赖外部专家模型,难以全面衡量模型能力。 与此形成鲜明对比的是,人类可以凭借已有知识轻松判断图像中物体的朝向,或推理多个物体的相对位置。而VLM同样具备丰富的知识,却仍在此类任务上 表现不足。 为此,武汉大学联合中科院自动化所,北京智源人工智能研究院 (BAAI)等多家单位推出 首个面向驾驶场景的VLM空间推理大规模基准 SURDS ,系统评测了 包括 GPT 系列在内的通用模型及 SpatialRGPT 等空间推理模型,全面揭示了当前VLM在空间理解方面的短板。研究团队通过设计"感知准确性"和" ...
AI Lab最新InternSpatia:VLM空间推理数据集,显著提升模型能力
具身智能之心· 2025-06-24 14:09
Core Insights - The article discusses the limitations of current Vision-Language Models (VLMs) in spatial reasoning tasks, highlighting the need for improved datasets and methodologies to enhance performance in various scenarios [3][12]. Dataset Limitations - The existing InternSpatial dataset has three main limitations: 1. Limited scene diversity, focusing primarily on indoor and outdoor environments, lacking diverse contexts like driving and embodied navigation [3]. 2. Restricted instruction formats, only supporting natural language or region masks, which do not encompass the variety of queries found in real-world applications [3]. 3. Lack of multi-view supervision, with over 90% of data focusing on single-image reasoning, failing to model spatiotemporal relationships across views [3]. Evaluation Benchmark - The InternSpatial-Bench evaluation benchmark includes 6,008 QA pairs across five tasks, assessing position comparison, size comparison, rotation estimation, object counting, and existence estimation [7]. - The benchmark also introduces 1,000 additional QA pairs for multi-view rotation angle prediction [7]. Data Engine Design - The data engine employs a three-stage automated pipeline: 1. Annotation generation using existing annotations or SAM2 for mask generation [9]. 2. View alignment to construct a standard 3D coordinate system [9]. 3. Template-based QA generation with predefined task templates [9]. Experimental Results - Spatial reasoning performance has improved, with InternVL-Spatial-8B showing a 1.8% increase in position comparison accuracy and a 17% increase in object counting accuracy compared to its predecessor [10]. - The model's performance across various tasks demonstrates significant enhancements, particularly in multi-view tasks [10]. Instruction Format Robustness - Current models exhibit a 23% accuracy drop when using the <box> format, while training with InternSpatial reduces the gap between different formats to within 5% [12]. - However, the automated QA generation struggles to replicate the complexity of natural language, indicating a need for further refinement [12].
多模态模型挑战北京杭州地铁图!o3成绩显著,但跟人类有差距
量子位· 2025-06-07 05:02
ReasonMap团队 投稿 量子位 | 公众号 QbitAI 近年来,大语言模型(LLMs)以及多模态大模型(MLLMs)在多种场景理解和复杂推理任务中取得突破性进展。 然而,一个关键问题仍然值得追问: 多模态大模型(MLLMs),真的能"看懂图"了吗? 特别是在面对结构复杂、细节密集的图像时,它们是否具备细粒度视觉理解与空间推理能力,比如挑战一下高清 地铁图 这种。 为此,来自西湖大学、新加坡国立大学、浙江大学、华中科技大学的团队提出了一个全新的评测基准 ReasonMap 。 看得出来北京、杭州的地铁图难倒了一大片模型。 这是首个聚焦于 高分辨率交通图(主要为地铁图)的多模态推理评测基准,专为评估大模型在理解图像中细粒度的结构化空间信息 方面的 能力而设计。 结果发现,当前主流开源的多模态模型在ReasonMap上面临明显性能瓶颈,尤其在 跨线路路径规划 上常出现视觉混淆或站点遗漏。 而经强化学习后训练的闭源推理模型(如 GPT-o3)在多个维度上 显著优于 现有开源模型,但与人类水平相比仍存在明显差距。 在面对不同国家地区的地铁图中,四个代表性 MLLM(Qwen2.5-VL-72B-I(蓝色)、 I ...