神经科学

Search documents
把科学梦想“种”进更多人心田(弘扬科学家精神·关注科普月)
Ren Min Ri Bao· 2025-09-28 22:28
郑纬民在授课。 吴承蔚摄 舒德干(左一)在和学生交流。 西北大学供图 苏国辉在做讲座。 受访者供图 首个全国科普月,一些中国科学院、中国工程院院士或走进党政机关、学校和企业,或借助互联网等传 播平台,为社会公众带来了丰富多彩的科普活动。两院院士是科普的重要力量,在科普工作中发挥着重 要作用。他们深入浅出,在全社会激发崇尚科学、探索未知的兴趣;他们创新形式,让科普的声音传播 得更广更远。 日前,本报记者专访了3位院士,看他们在科普现场为大家带来哪些精彩讲述。听他们谈谈,科普工作 如何才能做得更好。 ——编 者 中国工程院院士、清华大学教授郑纬民 科普方法要有针对性 【人物小传】 郑纬民,1946年生,中国工程院院士、清华大学计算机科学与技术系教授。长期从事高性能计算机体系 结构、并行算法和系统,存储系统,大数据和人工智能处理平台的研究与教学工作。曾获国家科技进步 奖一等奖、二等奖,何梁何利基金科学与技术进步奖等。 问:您的日常科研工作很忙,为什么还经常开展科普讲座、在互联网上做科普? 答:对于院士群体而言,参与科普活动是我们的义务和职责之一。做科普是一件非常要紧的事,有很多 好处——能帮助公众更好地理解科学知识 ...
光刺激新技术能加速大脑类器官成熟
Ke Ji Ri Bao· 2025-08-25 08:30
Core Viewpoint - The GraMOS technology developed by the Sanford Consortium for Regenerative Medicine at UC San Diego accelerates the development and maturation of brain organoids, providing new insights into neurodegenerative diseases like Alzheimer's and enabling real-time control of robotic devices by organoids [1][2]. Group 1: Technology Overview - GraMOS utilizes the unique optoelectronic properties of graphene to convert light signals into gentle electrical stimulation, promoting connections and communication between neurons [2]. - This method mimics the natural input signals received by the brain, facilitating the development of neural networks without invasive techniques [2]. - Regular application of GraMOS leads to stronger neural connections, more organized neural networks, and improved communication efficiency, particularly in organoid models derived from Alzheimer's patients [2]. Group 2: Applications and Implications - The technology opens new pathways for research into neurological diseases, brain-machine interface development, and the integration of living neural tissue with technological systems [1][2]. - A proof-of-concept experiment demonstrated the integration of graphene-connected brain organoids into a robotic system, allowing the robot to respond to environmental stimuli in just 50 milliseconds [2]. - The research signifies a major breakthrough in the application of graphene in neuroscience, nanotechnology, and neuroengineering, potentially leading to a powerful platform for studying neurodegenerative diseases and developmental brain disorders [2][3]. Group 3: Future Prospects - GraMOS has two primary applications: accelerating the maturation of the nervous system for more physiologically relevant disease observation and enabling brain organoids to respond to external environments, showcasing significant potential in AI [3]. - The combination of graphene's multifunctionality with the biological characteristics of brain organoids is redefining the boundaries of neuroscience, potentially leading to transformative changes in basic research, AI, and medical engineering [3].